On the Existence of a Complexity in Fixed Budget Bandit Identification
- URL: http://arxiv.org/abs/2303.09468v2
- Date: Fri, 30 Jun 2023 09:42:18 GMT
- Title: On the Existence of a Complexity in Fixed Budget Bandit Identification
- Authors: R\'emy Degenne
- Abstract summary: In fixed budget bandit identification, an algorithm sequentially observes samples from several distributions up to a given final time.
We show that there is no such complexity for several fixed budget identification tasks including Bernoulli best arm identification with two arms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In fixed budget bandit identification, an algorithm sequentially observes
samples from several distributions up to a given final time. It then answers a
query about the set of distributions. A good algorithm will have a small
probability of error. While that probability decreases exponentially with the
final time, the best attainable rate is not known precisely for most
identification tasks. We show that if a fixed budget task admits a complexity,
defined as a lower bound on the probability of error which is attained by the
same algorithm on all bandit problems, then that complexity is determined by
the best non-adaptive sampling procedure for that problem. We show that there
is no such complexity for several fixed budget identification tasks including
Bernoulli best arm identification with two arms: there is no single algorithm
that attains everywhere the best possible rate.
Related papers
- Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.
We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.
Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - On Universally Optimal Algorithms for A/B Testing [49.429419538826444]
We study the problem of best-arm identification with fixed budget in multi-armed bandits with Bernoulli rewards.
For the problem with two arms, also known as the A/B testing problem, we prove that there is no algorithm that performs as well as the algorithm sampling each arm equally.
arXiv Detail & Related papers (2023-08-23T08:38:53Z) - Best arm identification in rare events [0.43012765978447565]
A key application of this framework is in online advertising where click rates of advertisements could be a fraction of a single percent and final conversion to sales, while highly profitable, may again be a small fraction of the click rates.
Lately, algorithms for BAI problems have been developed that minimise sample complexity while providing statistical guarantees on the correct arm selection.
We exploit the fact that the reward process for each arm is well approximated by a Compound Poisson process to arrive at algorithms that are faster, with a small increase in sample complexity.
arXiv Detail & Related papers (2023-03-14T04:51:24Z) - On the Sample Complexity of Representation Learning in Multi-task
Bandits with Global and Local structure [77.60508571062958]
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems.
Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor)
We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(Glog(delta_G)+ Xlog(delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors.
arXiv Detail & Related papers (2022-11-28T08:40:12Z) - Choosing Answers in $\varepsilon$-Best-Answer Identification for Linear
Bandits [0.8122270502556374]
In a pure-exploration problem, information is gathered sequentially to answer a question on the environment.
We show that picking the answer with highest mean does not allow an algorithm to reach optimality in terms of expected sample complexity.
We develop a simple procedure to adapt best-arm identification algorithms to tackle $varepsilon$-best-answer identification in transductive linear bandits.
arXiv Detail & Related papers (2022-06-09T12:27:51Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z) - Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a
Differentially Private Scheme [16.1694012177079]
We study the best-arm identification problem in multi-armed bandits with, potentially private rewards.
The goal is to identify the arm with the highest quantile at a fixed, prescribed level.
We show that our algorithm is $delta$-PAC and we characterize its sample complexity.
arXiv Detail & Related papers (2020-06-11T20:23:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.