Optimal Settings For Amplification And Estimation Of Small Effects In
Postselected Ensembles
- URL: http://arxiv.org/abs/2303.09786v1
- Date: Fri, 17 Mar 2023 06:01:19 GMT
- Title: Optimal Settings For Amplification And Estimation Of Small Effects In
Postselected Ensembles
- Authors: Aiham M. Rostom
- Abstract summary: We show that the postselection on a quantum system recovers a completely hidden interference effect in the measurement apparatus.
Using single photons, it is investigated how a postselected photon can impart a $pi$ phase shift to a photon interacting weakly with it in a nonlinear optical medium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To describe the pre- and post-selected quantum ensembles, a complex quantity
called the weak value of an operator is used. The weak value is highly
controversial due to the fact that it is not bounded by the possible
eigenvalues of the corresponding operator. Nevertheless, the obtaining of the
anomalous weak value is regarded as a powerful technique in the quantum
interferometry nowadays. Here it is shown that the postselection on a quantum
system recovers a completely hidden interference effect in the measurement
apparatus. Studying the interference pattern shows the optimal settings for the
amplification and the parameter estimation. It also proves that the weak value
is not an element of reality. Using single photons, it is investigated how a
postselected photon can impart a $\pi$ phase shift (the peak of the
amplification) to a photon interacting weakly with it in a nonlinear optical
medium. The increasing of the degree of the entanglement lies behind the
effectiveness of the postselection in the parameter estimation. In particular,
arranging to postselect on pure entangled states can optimize the
signal-to-noise ratio, allowing to achieve high-sensitive measurements using
low input power.
Related papers
- Quantum Imaging and Metrology with Undetected squeezed Photons: Noise Canceling and Noise Based Imaging [0.0]
A quantum imaging setup based on undetected squeezed photons is employed for sensitive phase measurement and quantum imaging.
In spite of the traditional quantum imaging with undetected photons, the proposed setup is equipped by a homodyne detection.
The results reveal the higher amount of signal to noise ratio, as a measure of image quality and phase-measurement accuracy.
arXiv Detail & Related papers (2024-11-07T20:29:16Z) - Quantum advantage of time-reversed ancilla-based metrology of absorption
parameters [2.5499055723658097]
We consider the important problem of estimation of transmission of light by a sample, with losses due to absorption and scattering.
We show, through the determination of the quantum Fisher information, that the ancilla strategy leads to the best possible precision in single-mode estimation.
arXiv Detail & Related papers (2023-10-09T20:41:53Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Quantum metrology of noisy spreading channels [0.0]
We provide the optimal measurement strategy for a class of noisy channels.
We show that, for small displacement, a squeezed vacuum probe field is optimal among strategies with same average energy.
arXiv Detail & Related papers (2022-08-19T15:05:26Z) - An Enhanced Photonic Quantum Finite Automaton [52.77024349608834]
We have described an optical implementation of a measure-once one-way quantum finite automaton recognizing a well-known family of unary periodic languages.
To process input words, the automaton exploits the degree of polarization of single photons and, to reduce the acceptance error probability, a technique of confidence amplification using the photon counts is implemented.
arXiv Detail & Related papers (2021-09-21T11:14:26Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Implementation of weak measurement amplification with the weak coherent
light and optomechanical system [11.30291586021715]
We find that using weak coherent light instead of a single photon can amplify the mirror's position displacement of one photon.
This opens up a new regime for the study of a single photon nonlinearity in optomechanical system.
arXiv Detail & Related papers (2021-04-08T07:24:00Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Non-Markovian effect on quantum optical metrology under dissipative
environment [1.6058099298620423]
Non-Markovian effects are shown to be effective in performing quantum optical metrology under locally dissipative environments.
Our work provides a recipe to realize ultrasensitive measurements in the presence of noise by utilizing non-Markovian effects.
arXiv Detail & Related papers (2020-02-09T14:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.