Alternate Loss Functions for Classification and Robust Regression Can Improve the Accuracy of Artificial Neural Networks
- URL: http://arxiv.org/abs/2303.09935v4
- Date: Tue, 05 Nov 2024 05:03:51 GMT
- Title: Alternate Loss Functions for Classification and Robust Regression Can Improve the Accuracy of Artificial Neural Networks
- Authors: Mathew Mithra Noel, Arindam Banerjee, Yug Oswal, Geraldine Bessie Amali D, Venkataraman Muthiah-Nakarajan,
- Abstract summary: This paper shows that training speed and final accuracy of neural networks can significantly depend on the loss function used to train neural networks.
Two new classification loss functions that significantly improve performance on a wide variety of benchmark tasks are proposed.
- Score: 6.452225158891343
- License:
- Abstract: All machine learning algorithms use a loss, cost, utility or reward function to encode the learning objective and oversee the learning process. This function that supervises learning is a frequently unrecognized hyperparameter that determines how incorrect outputs are penalized and can be tuned to improve performance. This paper shows that training speed and final accuracy of neural networks can significantly depend on the loss function used to train neural networks. In particular derivative values can be significantly different with different loss functions leading to significantly different performance after gradient descent based Backpropagation (BP) training. This paper explores the effect on performance of using new loss functions that are also convex but penalize errors differently compared to the popular Cross-entropy loss. Two new classification loss functions that significantly improve performance on a wide variety of benchmark tasks are proposed. A new loss function call smooth absolute error that outperforms the Squared error, Huber and Log-Cosh losses on datasets with significantly many outliers is proposed. This smooth absolute error loss function is infinitely differentiable and more closely approximates the absolute error loss compared to the Huber and Log-Cosh losses used for robust regression.
Related papers
- Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms [80.37846867546517]
We show how to train eight different neural networks with custom objectives.
We exploit their second-order information via their empirical Fisherssian matrices.
We apply Loss Lossiable algorithms to achieve significant improvements for less differentiable algorithms.
arXiv Detail & Related papers (2024-10-24T18:02:11Z) - Reduced Jeffries-Matusita distance: A Novel Loss Function to Improve
Generalization Performance of Deep Classification Models [0.0]
We introduce a distance called Reduced Jeffries-Matusita as a loss function for training deep classification models to reduce the over-fitting issue.
The results show that the new distance measure stabilizes the training process significantly, enhances the generalization ability, and improves the performance of the models in the Accuracy and F1-score metrics.
arXiv Detail & Related papers (2024-03-13T10:51:38Z) - Online Loss Function Learning [13.744076477599707]
Loss function learning aims to automate the task of designing a loss function for a machine learning model.
We propose a new loss function learning technique for adaptively updating the loss function online after each update to the base model parameters.
arXiv Detail & Related papers (2023-01-30T19:22:46Z) - A survey and taxonomy of loss functions in machine learning [60.41650195728953]
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions.
This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.
arXiv Detail & Related papers (2023-01-13T14:38:24Z) - Xtreme Margin: A Tunable Loss Function for Binary Classification
Problems [0.0]
We provide an overview of a novel loss function, the Xtreme Margin loss function.
Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process.
arXiv Detail & Related papers (2022-10-31T22:39:32Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Mixing between the Cross Entropy and the Expectation Loss Terms [89.30385901335323]
Cross entropy loss tends to focus on hard to classify samples during training.
We show that adding to the optimization goal the expectation loss helps the network to achieve better accuracy.
Our experiments show that the new training protocol improves performance across a diverse set of classification domains.
arXiv Detail & Related papers (2021-09-12T23:14:06Z) - Finding hidden-feature depending laws inside a data set and classifying
it using Neural Network [0.0]
The logcosh loss function for neural networks has been developed to combine the advantage of the absolute error loss function of not overweighting outliers with the advantage of the mean square error of continuous derivative near the mean.
This work suggests a method that uses artificial neural networks with logcosh loss to find the branches of set-valued mappings in parameter-outcome sample sets and classifies the samples according to those branches.
arXiv Detail & Related papers (2021-01-25T21:37:37Z) - Why Do Better Loss Functions Lead to Less Transferable Features? [93.47297944685114]
This paper studies how the choice of training objective affects the transferability of the hidden representations of convolutional neural networks trained on ImageNet.
We show that many objectives lead to statistically significant improvements in ImageNet accuracy over vanilla softmax cross-entropy, but the resulting fixed feature extractors transfer substantially worse to downstream tasks.
arXiv Detail & Related papers (2020-10-30T17:50:31Z) - $\sigma^2$R Loss: a Weighted Loss by Multiplicative Factors using
Sigmoidal Functions [0.9569316316728905]
We introduce a new loss function called squared reduction loss ($sigma2$R loss), which is regulated by a sigmoid function to inflate/deflate the error per instance.
Our loss has clear intuition and geometric interpretation, we demonstrate by experiments the effectiveness of our proposal.
arXiv Detail & Related papers (2020-09-18T12:34:40Z) - An Equivalence between Loss Functions and Non-Uniform Sampling in
Experience Replay [72.23433407017558]
We show that any loss function evaluated with non-uniformly sampled data can be transformed into another uniformly sampled loss function.
Surprisingly, we find in some environments PER can be replaced entirely by this new loss function without impact to empirical performance.
arXiv Detail & Related papers (2020-07-12T17:45:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.