Multivariate Probabilistic CRPS Learning with an Application to
Day-Ahead Electricity Prices
- URL: http://arxiv.org/abs/2303.10019v3
- Date: Tue, 6 Feb 2024 20:39:45 GMT
- Title: Multivariate Probabilistic CRPS Learning with an Application to
Day-Ahead Electricity Prices
- Authors: Jonathan Berrisch, Florian Ziel
- Abstract summary: This paper presents a new method for combining (or aggregating or ensembling) multivariate probabilistic forecasts.
It considers dependencies between quantiles and marginals through a smoothing procedure that allows for online learning.
A fast C++ implementation of the proposed algorithm is provided in the open-source R-Package profoc on CRAN.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new method for combining (or aggregating or ensembling)
multivariate probabilistic forecasts, considering dependencies between
quantiles and marginals through a smoothing procedure that allows for online
learning. We discuss two smoothing methods: dimensionality reduction using
Basis matrices and penalized smoothing. The new online learning algorithm
generalizes the standard CRPS learning framework into multivariate dimensions.
It is based on Bernstein Online Aggregation (BOA) and yields optimal asymptotic
learning properties. The procedure uses horizontal aggregation, i.e.,
aggregation across quantiles. We provide an in-depth discussion on possible
extensions of the algorithm and several nested cases related to the existing
literature on online forecast combination. We apply the proposed methodology to
forecasting day-ahead electricity prices, which are 24-dimensional
distributional forecasts. The proposed method yields significant improvements
over uniform combination in terms of continuous ranked probability score
(CRPS). We discuss the temporal evolution of the weights and hyperparameters
and present the results of reduced versions of the preferred model. A fast C++
implementation of the proposed algorithm is provided in the open-source
R-Package profoc on CRAN.
Related papers
- Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
We propose an online learning algorithm for a class of machine learning models under a separable approximation framework.
We show that the proposed algorithm produces more robust and test performance when compared to other popular learning algorithms.
arXiv Detail & Related papers (2023-05-12T13:53:03Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Supervised Multivariate Learning with Simultaneous Feature Auto-grouping
and Dimension Reduction [7.093830786026851]
This paper proposes a novel clustered reduced-rank learning framework.
It imposes two joint matrix regularizations to automatically group the features in constructing predictive factors.
It is more interpretable than low-rank modeling and relaxes the stringent sparsity assumption in variable selection.
arXiv Detail & Related papers (2021-12-17T20:11:20Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
A Parsimony Enhanced Sparse Bayesian Learning (PeSBL) method is developed for discovering the governing Partial Differential Equations (PDEs) of nonlinear dynamical systems.
Results of numerical case studies indicate that the governing PDEs of many canonical dynamical systems can be correctly identified using the proposed PeSBL method.
arXiv Detail & Related papers (2021-07-08T00:56:11Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
We adapt contextual generation of categorical sequences to a policy gradient estimator, which evaluates a set of correlated Monte Carlo (MC) rollouts for variance control.
We also demonstrate the use of correlated MC rollouts for binary-tree softmax models, which reduce the high generation cost in large vocabulary scenarios.
arXiv Detail & Related papers (2019-12-31T03:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.