Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process
Models of Nonstationary Systems
- URL: http://arxiv.org/abs/2303.10022v1
- Date: Fri, 17 Mar 2023 14:50:51 GMT
- Title: Hierarchical-Hyperplane Kernels for Actively Learning Gaussian Process
Models of Nonstationary Systems
- Authors: Matthias Bitzer, Mona Meister, Christoph Zimmer
- Abstract summary: We present a kernel family that incorporates a partitioning that is learnable via gradient-based methods.
We empirically demonstrate excellent performance on various active learning tasks.
- Score: 5.1672267755831705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning precise surrogate models of complex computer simulations and
physical machines often require long-lasting or expensive experiments.
Furthermore, the modeled physical dependencies exhibit nonlinear and
nonstationary behavior. Machine learning methods that are used to produce the
surrogate model should therefore address these problems by providing a scheme
to keep the number of queries small, e.g. by using active learning and be able
to capture the nonlinear and nonstationary properties of the system. One way of
modeling the nonstationarity is to induce input-partitioning, a principle that
has proven to be advantageous in active learning for Gaussian processes.
However, these methods either assume a known partitioning, need to introduce
complex sampling schemes or rely on very simple geometries. In this work, we
present a simple, yet powerful kernel family that incorporates a partitioning
that: i) is learnable via gradient-based methods, ii) uses a geometry that is
more flexible than previous ones, while still being applicable in the low data
regime. Thus, it provides a good prior for active learning procedures. We
empirically demonstrate excellent performance on various active learning tasks.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Active Learning for Control-Oriented Identification of Nonlinear Systems [26.231260751633307]
We present the first finite sample analysis of an active learning algorithm suitable for a general class of nonlinear dynamics.
In certain settings, the excess control cost of our algorithm achieves the optimal rate, up to logarithmic factors.
We validate our approach in simulation, showcasing the advantage of active, control-oriented exploration for controlling nonlinear systems.
arXiv Detail & Related papers (2024-04-13T15:40:39Z) - Tensor Decompositions Meet Control Theory: Learning General Mixtures of
Linear Dynamical Systems [19.47235707806519]
We give a new approach to learning mixtures of linear dynamical systems based on tensor decompositions.
Our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories.
arXiv Detail & Related papers (2023-07-13T03:00:01Z) - Learning non-stationary and discontinuous functions using clustering,
classification and Gaussian process modelling [0.0]
We propose a three-stage approach for the approximation of non-smooth functions.
The idea is to split the space following the localized behaviors or regimes of the system and build local surrogates.
The approach is tested and validated on two analytical functions and a finite element model of a tensile membrane structure.
arXiv Detail & Related papers (2022-11-30T11:11:56Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Agnostic Physics-Driven Deep Learning [82.89993762912795]
This work establishes that a physical system can perform statistical gradient learning without gradient computations.
In Aeqprop, the specifics of the system do not have to be known: the procedure is based on external manipulations.
Aeqprop also establishes that in natural (bio)physical systems, genuine gradient-based statistical learning may result from generic, relatively simple mechanisms.
arXiv Detail & Related papers (2022-05-30T12:02:53Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.