Individual differences in knowledge network navigation
- URL: http://arxiv.org/abs/2303.10036v2
- Date: Tue, 19 Mar 2024 08:38:16 GMT
- Title: Individual differences in knowledge network navigation
- Authors: Manran Zhu, Taha Yasseri, János Kertész,
- Abstract summary: We show that age negatively affects knowledge space navigation performance, while multilingualism enhances it.
Under time pressure, participants' performance improves and males outperform females, an effect not observed in games without time pressure.
Our results underline the importance of age, multilingualism and time constraint in the knowledge space navigation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid accumulation of online information, efficient web navigation has grown vital yet challenging. To create an easily navigable cyberspace catering to diverse demographics, understanding how people navigate differently is paramount. While previous research has unveiled individual differences in spatial navigation, such differences in knowledge space navigation remain sparse. To bridge this gap, we conducted an online experiment where participants played a navigation game on Wikipedia and completed personal information questionnaires. Our analysis shows that age negatively affects knowledge space navigation performance, while multilingualism enhances it. Under time pressure, participants' performance improves across trials and males outperform females, an effect not observed in games without time pressure. In our experiment, successful route-finding is usually not related to abilities of innovative exploration of routes. Our results underline the importance of age, multilingualism and time constraint in the knowledge space navigation.
Related papers
- A Role of Environmental Complexity on Representation Learning in Deep Reinforcement Learning Agents [3.7314353481448337]
We developed a simulated navigation environment to train deep reinforcement learning agents.
We modulated the frequency of exposure to a shortcut and navigation cue, leading to the development of artificial agents with differing abilities.
We examined the encoded representations in artificial neural networks driving these agents, revealing intricate dynamics in representation learning.
arXiv Detail & Related papers (2024-07-03T18:27:26Z) - Two-Stage Depth Enhanced Learning with Obstacle Map For Object Navigation [11.667940255053582]
This paper uses the RGB and depth information of the training scene to pretrain the feature extractor, which improves navigation efficiency.
We evaluated our method on AI2-Thor and RoboTHOR and demonstrated that it significantly outperforms state-of-the-art (SOTA) methods on success rate and navigation efficiency.
arXiv Detail & Related papers (2024-06-20T08:35:10Z) - Towards Versatile Embodied Navigation [120.73460380993305]
Vienna is a versatile embodied navigation agent that simultaneously learns to perform the four navigation tasks with one model.
We empirically demonstrate that, compared with learning each visual navigation task individually, our agent achieves comparable or even better performance with reduced complexity.
arXiv Detail & Related papers (2022-10-30T11:53:49Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
We propose an augmented reality navigation system for visual prosthesis that incorporates a software of reactive navigation and path planning.
It consists on four steps: locating the subject on a map, planning the subject trajectory, showing it to the subject and re-planning without obstacles.
Results show how our augmented navigation system help navigation performance by reducing the time and distance to reach the goals, even significantly reducing the number of obstacles collisions.
arXiv Detail & Related papers (2021-09-30T09:41:40Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
"Embodied visual navigation" problem requires an agent to navigate in a 3D environment mainly rely on its first-person observation.
This paper attempts to establish an outline of the current works in the field of embodied visual navigation by providing a comprehensive literature survey.
arXiv Detail & Related papers (2021-07-07T12:09:04Z) - Diagnosing Vision-and-Language Navigation: What Really Matters [61.72935815656582]
Vision-and-language navigation (VLN) is a multimodal task where an agent follows natural language instructions and navigates in visual environments.
Recent studies witness a slow-down in the performance improvements in both indoor and outdoor VLN tasks.
In this work, we conduct a series of diagnostic experiments to unveil agents' focus during navigation.
arXiv Detail & Related papers (2021-03-30T17:59:07Z) - Exploring Navigation Styles in a FutureLearn MOOC [61.58283466715385]
This paper presents for the first time a detailed analysis of fine-grained navigation style identification in MOOCs backed by a large number of active learners.
It provides insight into online learners' temporal engagement, as well as a tool to identify vulnerable learners.
arXiv Detail & Related papers (2020-08-10T19:12:21Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
Vision-language navigation (VLN) is the task of entailing an agent to carry out navigational instructions inside photo-realistic environments.
One of the key challenges in VLN is how to conduct a robust navigation by mitigating the uncertainty caused by ambiguous instructions and insufficient observation of the environment.
This work draws inspiration from human navigation behavior and endows an agent with an active information gathering ability for a more intelligent VLN policy.
arXiv Detail & Related papers (2020-07-15T23:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.