A machine learning and feature engineering approach for the prediction
of the uncontrolled re-entry of space objects
- URL: http://arxiv.org/abs/2303.10183v1
- Date: Fri, 17 Mar 2023 13:53:59 GMT
- Title: A machine learning and feature engineering approach for the prediction
of the uncontrolled re-entry of space objects
- Authors: Francesco Salmaso and Mirko Trisolini and Camilla Colombo
- Abstract summary: We present the development of a deep learning model for the re-entry prediction of uncontrolled objects in Low Earth Orbit (LEO)
The model is based on a modified version of the Sequence-to-Sequence architecture and is trained on the average altitude profile as derived from a set of Two-Line Element (TLE) data of over 400 bodies.
The novelty of the work consists in introducing in the deep learning model, alongside the average altitude, three new input features: a drag-like coefficient (B*), the average solar index, and the area-to-mass ratio of the object.
- Score: 1.0205541448656992
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The continuously growing number of objects orbiting around the Earth is
expected to be accompanied by an increasing frequency of objects re-entering
the Earth's atmosphere. Many of these re-entries will be uncontrolled, making
their prediction challenging and subject to several uncertainties.
Traditionally, re-entry predictions are based on the propagation of the
object's dynamics using state-of-the-art modelling techniques for the forces
acting on the object. However, modelling errors, particularly related to the
prediction of atmospheric drag may result in poor prediction accuracies. In
this context, we explore the possibility to perform a paradigm shift, from a
physics-based approach to a data-driven approach. To this aim, we present the
development of a deep learning model for the re-entry prediction of
uncontrolled objects in Low Earth Orbit (LEO). The model is based on a modified
version of the Sequence-to-Sequence architecture and is trained on the average
altitude profile as derived from a set of Two-Line Element (TLE) data of over
400 bodies. The novelty of the work consists in introducing in the deep
learning model, alongside the average altitude, three new input features: a
drag-like coefficient (B*), the average solar index, and the area-to-mass ratio
of the object. The developed model is tested on a set of objects studied in the
Inter-Agency Space Debris Coordination Committee (IADC) campaigns. The results
show that the best performances are obtained on bodies characterised by the
same drag-like coefficient and eccentricity distribution as the training set.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
We introduce VRD, a vectorized world model-inspired approach to the multi-agent motion forecasting problem.
Our method combines a traditional open-loop training regime with a novel dreamed closed-loop training pipeline.
Our model achieves state-of-the-art performance on the single prediction miss rate metric.
arXiv Detail & Related papers (2024-06-20T15:34:17Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive data.
We have utilized this framework to create Prithvi, a transformer-based foundational model pre-trained on more than 1TB of multispectral satellite imagery.
arXiv Detail & Related papers (2023-10-28T10:19:55Z) - Earthformer: Exploring Space-Time Transformers for Earth System
Forecasting [27.60569643222878]
We propose Earthformer, a space-time Transformer for Earth system forecasting.
The Transformer is based on a generic, flexible and efficient space-time attention block, named Cuboid Attention.
Experiments on two real-world benchmarks about precipitation nowcasting and El Nino/Southerntemporaltion show Earthformer achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-07-12T20:52:26Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Harnessing expressive capacity of Machine Learning modeling to represent
complex coupling of Earth's auroral space weather regimes [0.0]
We develop multiple Deep Learning (DL) models that advance predictions of the global auroral particle precipitation.
We use observations from low Earth orbiting spacecraft of electron energy flux to develop a model that improves global nowcasts.
Notably, the ML models improve prediction of the extreme events, historically to accurate specification and indicate that increased capacity provided by ML innovation can address grand challenges in science of space weather.
arXiv Detail & Related papers (2021-11-29T22:35:09Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.