Constructing Metric-Semantic Maps using Floor Plan Priors for Long-Term
Indoor Localization
- URL: http://arxiv.org/abs/2303.10959v2
- Date: Fri, 13 Oct 2023 15:56:51 GMT
- Title: Constructing Metric-Semantic Maps using Floor Plan Priors for Long-Term
Indoor Localization
- Authors: Nicky Zimmerman and Matteo Sodano and Elias Marks and Jens Behley and
Cyrill Stachniss
- Abstract summary: In this paper, we address the task of constructing a metric-semantic map for the purpose of long-term object-based localization.
We exploit 3D object detections from monocular RGB frames for both, the object-based map construction, and for globally localizing in the constructed map.
We evaluate our map construction in an office building, and test our long-term localization approach on challenging sequences recorded in the same environment over nine months.
- Score: 29.404446814219202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object-based maps are relevant for scene understanding since they integrate
geometric and semantic information of the environment, allowing autonomous
robots to robustly localize and interact with on objects. In this paper, we
address the task of constructing a metric-semantic map for the purpose of
long-term object-based localization. We exploit 3D object detections from
monocular RGB frames for both, the object-based map construction, and for
globally localizing in the constructed map. To tailor the approach to a target
environment, we propose an efficient way of generating 3D annotations to
finetune the 3D object detection model. We evaluate our map construction in an
office building, and test our long-term localization approach on challenging
sequences recorded in the same environment over nine months. The experiments
suggest that our approach is suitable for constructing metric-semantic maps,
and that our localization approach is robust to long-term changes. Both, the
mapping algorithm and the localization pipeline can run online on an onboard
computer. We release an open-source C++/ROS implementation of our approach.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Towards Localizing Structural Elements: Merging Geometrical Detection with Semantic Verification in RGB-D Data [0.0]
This paper presents a real-time pipeline for localizing building components, including wall and ground surfaces, by integrating geometric calculations for pure 3D plane detection.
It has a parallel multi-thread architecture to precisely estimate poses and equations of all the planes detected in the environment, filters the ones forming the map structure using a panoptic segmentation validation, and keeps only the validated building components.
It can also ensure (re-)association of these detected components into a unified 3D scene graph, bridging the gap between geometric accuracy and semantic understanding.
arXiv Detail & Related papers (2024-09-10T16:28:09Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
The present work proposes a method for semantic region mapping via embodied navigation in indoor environments.
To enable region identification, the method uses a vision-to-language model to provide scene information for mapping.
By projecting egocentric scene understanding into the global frame, the proposed method generates a semantic map as a distribution over possible region labels at each location.
arXiv Detail & Related papers (2024-03-11T18:09:50Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
We introduce an online 2D-to-3D semantic instance mapping algorithm aimed at generating semantic 3D maps suitable for autonomous agents in unstructured environments.
It introduces novel ways of integrating semantic prediction confidence during mapping, producing semantic and instance-consistent 3D regions.
The proposed method achieves accuracy superior to the state of the art on public large-scale datasets, improving on a number of widely used metrics.
arXiv Detail & Related papers (2023-09-26T08:03:10Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
We propose an implicit spatial map for object goal navigation.
Our method significantly outperforms the state of the art on the challenging MP3D dataset.
We deploy our model on a real robot and achieve encouraging object goal navigation results in real scenes.
arXiv Detail & Related papers (2023-08-10T14:21:33Z) - LocPoseNet: Robust Location Prior for Unseen Object Pose Estimation [69.70498875887611]
LocPoseNet is able to robustly learn location prior for unseen objects.
Our method outperforms existing works by a large margin on LINEMOD and GenMOP.
arXiv Detail & Related papers (2022-11-29T15:21:34Z) - Object-level 3D Semantic Mapping using a Network of Smart Edge Sensors [25.393382192511716]
We extend a multi-view 3D semantic mapping system consisting of a network of distributed edge sensors with object-level information.
Our method is evaluated on the public Behave dataset where it shows pose estimation within a few centimeters and in real-world experiments with the sensor network in a challenging lab environment.
arXiv Detail & Related papers (2022-11-21T11:13:08Z) - Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language
Navigation [87.52136927091712]
We address a practical yet challenging problem of training robot agents to navigate in an environment following a path described by some language instructions.
To achieve accurate and efficient navigation, it is critical to build a map that accurately represents both spatial location and the semantic information of the environment objects.
We propose a multi-granularity map, which contains both object fine-grained details (e.g., color, texture) and semantic classes, to represent objects more comprehensively.
arXiv Detail & Related papers (2022-10-14T04:23:27Z) - Lightweight Object-level Topological Semantic Mapping and Long-term
Global Localization based on Graph Matching [19.706907816202946]
We present a novel lightweight object-level mapping and localization method with high accuracy and robustness.
We use object-level features with both semantic and geometric information to model landmarks in the environment.
Based on the proposed map, the robust localization is achieved by constructing a novel local semantic scene graph descriptor.
arXiv Detail & Related papers (2022-01-16T05:47:07Z) - Object-Augmented RGB-D SLAM for Wide-Disparity Relocalisation [3.888848425698769]
We propose a novel object-augmented RGB-D SLAM system that is capable of constructing a consistent object map and performing relocalisation based on centroids of objects in the map.
arXiv Detail & Related papers (2021-08-05T11:02:25Z) - Extending Maps with Semantic and Contextual Object Information for Robot
Navigation: a Learning-Based Framework using Visual and Depth Cues [12.984393386954219]
This paper addresses the problem of building augmented metric representations of scenes with semantic information from RGB-D images.
We propose a complete framework to create an enhanced map representation of the environment with object-level information.
arXiv Detail & Related papers (2020-03-13T15:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.