EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation
- URL: http://arxiv.org/abs/2303.11089v2
- Date: Fri, 25 Aug 2023 04:50:47 GMT
- Title: EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation
- Authors: Ziqiao Peng, Haoyu Wu, Zhenbo Song, Hao Xu, Xiangyu Zhu, Jun He,
Hongyan Liu, Zhaoxin Fan
- Abstract summary: Speech-driven 3D face animation aims to generate realistic facial expressions that match the speech content and emotion.
This paper proposes an end-to-end neural network to disentangle different emotions in speech so as to generate rich 3D facial expressions.
Our approach outperforms state-of-the-art methods and exhibits more diverse facial movements.
- Score: 28.964917860664492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech-driven 3D face animation aims to generate realistic facial expressions
that match the speech content and emotion. However, existing methods often
neglect emotional facial expressions or fail to disentangle them from speech
content. To address this issue, this paper proposes an end-to-end neural
network to disentangle different emotions in speech so as to generate rich 3D
facial expressions. Specifically, we introduce the emotion disentangling
encoder (EDE) to disentangle the emotion and content in the speech by
cross-reconstructed speech signals with different emotion labels. Then an
emotion-guided feature fusion decoder is employed to generate a 3D talking face
with enhanced emotion. The decoder is driven by the disentangled identity,
emotional, and content embeddings so as to generate controllable personal and
emotional styles. Finally, considering the scarcity of the 3D emotional talking
face data, we resort to the supervision of facial blendshapes, which enables
the reconstruction of plausible 3D faces from 2D emotional data, and contribute
a large-scale 3D emotional talking face dataset (3D-ETF) to train the network.
Our experiments and user studies demonstrate that our approach outperforms
state-of-the-art methods and exhibits more diverse facial movements. We
recommend watching the supplementary video:
https://ziqiaopeng.github.io/emotalk
Related papers
- DEEPTalk: Dynamic Emotion Embedding for Probabilistic Speech-Driven 3D Face Animation [14.07086606183356]
Speech-driven 3D facial animation has garnered lots of attention thanks to its broad range of applications.
Current methods fail to capture the nuanced emotional undertones conveyed through speech and produce monotonous facial motion.
We introduce DEEPTalk, a novel approach that generates diverse and emotionally rich 3D facial expressions directly from speech inputs.
arXiv Detail & Related papers (2024-08-12T08:56:49Z) - EmoFace: Audio-driven Emotional 3D Face Animation [3.573880705052592]
EmoFace is a novel audio-driven methodology for creating facial animations with vivid emotional dynamics.
Our approach can generate facial expressions with multiple emotions, and has the ability to generate random yet natural blinks and eye movements.
Our proposed methodology can be applied in producing dialogues animations of non-playable characters in video games, and driving avatars in virtual reality environments.
arXiv Detail & Related papers (2024-07-17T11:32:16Z) - EmoSpeaker: One-shot Fine-grained Emotion-Controlled Talking Face
Generation [34.5592743467339]
We propose a visual attribute-guided audio decoupler to generate fine-grained facial animations.
To achieve more precise emotional expression, we introduce a fine-grained emotion coefficient prediction module.
Our proposed method, EmoSpeaker, outperforms existing emotional talking face generation methods in terms of expression variation and lip synchronization.
arXiv Detail & Related papers (2024-02-02T14:04:18Z) - AdaMesh: Personalized Facial Expressions and Head Poses for Adaptive Speech-Driven 3D Facial Animation [49.4220768835379]
AdaMesh is a novel adaptive speech-driven facial animation approach.
It learns the personalized talking style from a reference video of about 10 seconds.
It generates vivid facial expressions and head poses.
arXiv Detail & Related papers (2023-10-11T06:56:08Z) - DF-3DFace: One-to-Many Speech Synchronized 3D Face Animation with
Diffusion [68.85904927374165]
We propose DF-3DFace, a diffusion-driven speech-to-3D face mesh synthesis.
It captures the complex one-to-many relationships between speech and 3D face based on diffusion.
It simultaneously achieves more realistic facial animation than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-23T04:14:55Z) - Emotional Speech-Driven Animation with Content-Emotion Disentanglement [51.34635009347183]
We propose EMOTE, which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion.
EmOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data.
arXiv Detail & Related papers (2023-06-15T09:31:31Z) - Emotionally Enhanced Talking Face Generation [52.07451348895041]
We build a talking face generation framework conditioned on a categorical emotion to generate videos with appropriate expressions.
We show that our model can adapt to arbitrary identities, emotions, and languages.
Our proposed framework is equipped with a user-friendly web interface with a real-time experience for talking face generation with emotions.
arXiv Detail & Related papers (2023-03-21T02:33:27Z) - EMOCA: Emotion Driven Monocular Face Capture and Animation [59.15004328155593]
We introduce a novel deep perceptual emotion consistency loss during training, which helps ensure that the reconstructed 3D expression matches the expression depicted in the input image.
On the task of in-the-wild emotion recognition, our purely geometric approach is on par with the best image-based methods, highlighting the value of 3D geometry in analyzing human behavior.
arXiv Detail & Related papers (2022-04-24T15:58:35Z) - 3D-TalkEmo: Learning to Synthesize 3D Emotional Talking Head [13.305263646852087]
We introduce 3D-TalkEmo, a deep neural network that generates 3D talking head animation with various emotions.
We also create a large 3D dataset with synchronized audios and videos, rich corpus, as well as various emotion states of different persons.
arXiv Detail & Related papers (2021-04-25T02:48:19Z) - Audio- and Gaze-driven Facial Animation of Codec Avatars [149.0094713268313]
We describe the first approach to animate Codec Avatars in real-time using audio and/or eye tracking.
Our goal is to display expressive conversations between individuals that exhibit important social signals.
arXiv Detail & Related papers (2020-08-11T22:28:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.