Fault Detection via Occupation Kernel Principal Component Analysis
- URL: http://arxiv.org/abs/2303.11138v2
- Date: Mon, 26 Jun 2023 15:16:42 GMT
- Title: Fault Detection via Occupation Kernel Principal Component Analysis
- Authors: Zachary Morrison, Benjamin P. Russo, Yingzhao Lian, and Rushikesh
Kamalapurkar
- Abstract summary: We present a novel principal component analysis (PCA) method that uses occupation kernels.
Occupation kernels result in feature maps that are tailored to the measured data, have inherent noise-robustness due to the use of integration, and can utilize irregularly sampled system trajectories of variable lengths for PCA.
- Score: 2.2136680238528665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reliable operation of automatic systems is heavily dependent on the
ability to detect faults in the underlying dynamical system. While traditional
model-based methods have been widely used for fault detection, data-driven
approaches have garnered increasing attention due to their ease of deployment
and minimal need for expert knowledge. In this paper, we present a novel
principal component analysis (PCA) method that uses occupation kernels.
Occupation kernels result in feature maps that are tailored to the measured
data, have inherent noise-robustness due to the use of integration, and can
utilize irregularly sampled system trajectories of variable lengths for PCA.
The occupation kernel PCA method is used to develop a reconstruction error
approach to fault detection and its efficacy is validated using numerical
simulations.
Related papers
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
The proposed method is validated on an open dataset for industrial anomaly detection.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - PAC-Based Formal Verification for Out-of-Distribution Data Detection [4.406331747636832]
This study places probably approximately correct (PAC) based guarantees on OOD detection using the encoding process within VAEs.
It is used to bound the detection error on unfamiliar instances with user-defined confidence.
arXiv Detail & Related papers (2023-04-04T07:33:02Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Data-driven Residual Generation for Early Fault Detection with Limited
Data [4.129225533930966]
In many complex systems it is not feasible to develop highly accurate models for the systems.
Data-driven solutions have received an immense attention in the industries systems for several practical reasons.
Unlike the model-based methods it is straight forward to combine time series measurements such as pressure and voltage with other sources of information.
arXiv Detail & Related papers (2021-09-28T03:18:03Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
Rolling bearings are subject to various faults due to its long-time operation under harsh environment.
Current deep learning methods perform the bearing fault diagnosis in the form of deterministic classification.
We develop a probabilistic fault diagnosis framework that can account for the uncertainty effect in prediction.
arXiv Detail & Related papers (2021-09-19T18:34:29Z) - Anomaly Detection via Self-organizing Map [52.542991004752]
Anomaly detection plays a key role in industrial manufacturing for product quality control.
Traditional methods for anomaly detection are rule-based with limited generalization ability.
Recent methods based on supervised deep learning are more powerful but require large-scale annotated datasets for training.
arXiv Detail & Related papers (2021-07-21T06:56:57Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
It is impossible to collect enough data to learn all types of faults from a machine.
New algorithms, trained using data from healthy conditions only, were developed to perform unsupervised anomaly detection.
A key issue in the development of these algorithms is the noise in the signals, as it impacts the anomaly detection performance.
arXiv Detail & Related papers (2021-07-20T14:06:50Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
Machine learning models are used to predict accurate per-instance Functional De-Rating data for the full list of circuit instances.
The presented methodology is applied on a practical example and various machine learning models are evaluated and compared.
arXiv Detail & Related papers (2020-02-18T18:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.