Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
- URL: http://arxiv.org/abs/2303.11369v2
- Date: Sun, 16 Jul 2023 21:57:10 GMT
- Title: Bridging Imitation and Online Reinforcement Learning: An Optimistic Tale
- Authors: Botao Hao, Rahul Jain, Dengwang Tang, Zheng Wen
- Abstract summary: Given an offline demonstration dataset from an imperfect expert, what is the best way to leverage it to bootstrap online learning performance in MDPs?
We first propose an Informed Posterior Sampling-based RL (iPSRL) algorithm that uses the offline dataset, and information about the expert's behavioral policy used to generate the offline dataset.
Since this algorithm is computationally impractical, we then propose the iRLSVI algorithm that can be seen as a combination of the RLSVI algorithm for online RL, and imitation learning.
- Score: 27.02990488317357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the following problem: Given an offline
demonstration dataset from an imperfect expert, what is the best way to
leverage it to bootstrap online learning performance in MDPs. We first propose
an Informed Posterior Sampling-based RL (iPSRL) algorithm that uses the offline
dataset, and information about the expert's behavioral policy used to generate
the offline dataset. Its cumulative Bayesian regret goes down to zero
exponentially fast in N, the offline dataset size if the expert is competent
enough. Since this algorithm is computationally impractical, we then propose
the iRLSVI algorithm that can be seen as a combination of the RLSVI algorithm
for online RL, and imitation learning. Our empirical results show that the
proposed iRLSVI algorithm is able to achieve significant reduction in regret as
compared to two baselines: no offline data, and offline dataset but used
without information about the generative policy. Our algorithm bridges online
RL and imitation learning for the first time.
Related papers
- Efficient Online Learning with Offline Datasets for Infinite Horizon
MDPs: A Bayesian Approach [25.77911741149966]
We show that if the learning agent models the behavioral policy used by the expert, it can do substantially better in terms of minimizing cumulative regret.
We then propose the Informed RLSVI algorithm to efficiently approximate the iPSRL algorithm.
arXiv Detail & Related papers (2023-10-17T19:01:08Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Discriminator-Weighted Offline Imitation Learning from Suboptimal
Demonstrations [5.760034336327491]
We study the problem of offline Learning (IL) where an agent aims to learn an optimal expert behavior policy without additional online environment interactions.
We introduce an additional discriminator to distinguish expert and non-expert data.
Our proposed algorithm achieves higher returns and faster training speed compared to baseline algorithms.
arXiv Detail & Related papers (2022-07-20T17:29:04Z) - When Should We Prefer Offline Reinforcement Learning Over Behavioral
Cloning? [86.43517734716606]
offline reinforcement learning (RL) algorithms can acquire effective policies by utilizing previously collected experience, without any online interaction.
behavioral cloning (BC) algorithms mimic a subset of the dataset via supervised learning.
We show that policies trained on sufficiently noisy suboptimal data can attain better performance than even BC algorithms with expert data.
arXiv Detail & Related papers (2022-04-12T08:25:34Z) - Don't Change the Algorithm, Change the Data: Exploratory Data for
Offline Reinforcement Learning [147.61075994259807]
We propose Exploratory data for Offline RL (ExORL), a data-centric approach to offline RL.
ExORL first generates data with unsupervised reward-free exploration, then relabels this data with a downstream reward before training a policy with offline RL.
We find that exploratory data allows vanilla off-policy RL algorithms, without any offline-specific modifications, to outperform or match state-of-the-art offline RL algorithms on downstream tasks.
arXiv Detail & Related papers (2022-01-31T18:39:27Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making.
We find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms.
arXiv Detail & Related papers (2021-02-11T02:38:12Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.