Sparse-IFT: Sparse Iso-FLOP Transformations for Maximizing Training Efficiency
- URL: http://arxiv.org/abs/2303.11525v4
- Date: Wed, 17 Jul 2024 21:57:12 GMT
- Title: Sparse-IFT: Sparse Iso-FLOP Transformations for Maximizing Training Efficiency
- Authors: Vithursan Thangarasa, Shreyas Saxena, Abhay Gupta, Sean Lie,
- Abstract summary: Sparse Iso-FLOP Transformations (Sparse-IFT) uses sparsity to improve accuracy while maintaining dense model FLOPs.
Our study reveals a robust correlation among mask topology, weights, and final performance.
To the best of our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models.
- Score: 1.292809267782105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has focused on weight sparsity in deep neural network training to reduce FLOPs, aiming for improved efficiency (test accuracy w.r.t training FLOPs). However, sparse weight training often compromises accuracy, requiring extended training schedules to attain the accuracy of dense models. In contrast, our approach, Sparse Iso-FLOP Transformations (Sparse-IFT), uses sparsity to improve accuracy while maintaining dense model FLOPs. Using a single hyperparameter (i.e., the sparsity level), Sparse-IFTs efficiently replace dense layers, expanding the search space for optimal sparse masks. In addition, dynamic sparse training (DST) with Sparse-IFT models effectively navigate this larger sparse mask-weight space, which is evidenced by a spectral analysis using Ramanujan graph properties. Our study reveals a robust correlation among mask topology, weights, and final performance. Notably, without adjusting any training hyperparameters, replacing dense layers with Sparse-IFT yields significant improvements, such as a +3.5% boost for ResNet-18 on ImageNet and +0.9% for GPT-3 Small on the Open LLM leaderboard. To the best of our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models through a set of simple-to-use sparse transformations. Code is available at: https://github.com/CerebrasResearch/Sparse-IFT.
Related papers
- Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
This study focuses on Transformer-based LLMs, specifically applying low-rank parametrization to feedforward networks (FFNs)
Experiments on the large RefinedWeb dataset show that low-rank parametrization is both efficient (e.g., 2.6$times$ FFN speed-up with 32% parameters) and effective during training.
Motivated by this finding, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance.
arXiv Detail & Related papers (2024-07-13T10:08:55Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Weights Augmentation: it has never ever ever ever let her model down [1.5020330976600735]
This article proposes the concept of weight augmentation, focusing on weight exploration.
Weight Augmentation Strategy (WAS) is to adopt random transformed weight coefficients training and transformed, named Shadow Weight(SW), for networks that can be used to calculate loss function.
Our experimental results show that convolutional neural networks, such as VGG-16, ResNet-18, ResNet-34, GoogleNet, MobilementV2, and Efficientment-Lite, can benefit much at little or no cost.
arXiv Detail & Related papers (2024-05-30T00:57:06Z) - Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like
Speed [42.861344584752]
Previous detector-free matcher LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios.
We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
Our method can achieve higher accuracy compared with competitive semi-dense matchers.
arXiv Detail & Related papers (2024-03-07T18:58:40Z) - From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers [52.199303258423306]
We propose a novel density loss that encourages higher activation sparsity in pre-trained models.
Our proposed method, textbfDEFT, can consistently reduce activation density by up to textbf44.94% on RoBERTa$_mathrmLarge$ and by textbf53.19% (encoder density) and textbf90.60% (decoder density) on Flan-T5$_mathrmXXL$.
arXiv Detail & Related papers (2024-02-02T21:25:46Z) - Filter Pruning for Efficient CNNs via Knowledge-driven Differential
Filter Sampler [103.97487121678276]
Filter pruning simultaneously accelerates the computation and reduces the memory overhead of CNNs.
We propose a novel Knowledge-driven Differential Filter Sampler(KDFS) with Masked Filter Modeling(MFM) framework for filter pruning.
arXiv Detail & Related papers (2023-07-01T02:28:41Z) - AUTOSPARSE: Towards Automated Sparse Training of Deep Neural Networks [2.6742343015805083]
We propose Gradient Annealing (GA) to explore the non-uniform distribution of sparsity inherent within neural networks.
GA provides an elegant trade-off between sparsity and accuracy without the need for additional sparsity-inducing regularization.
We integrate GA with the latest learnable pruning methods to create an automated sparse training algorithm called AutoSparse.
arXiv Detail & Related papers (2023-04-14T06:19:07Z) - A Fast and Efficient Conditional Learning for Tunable Trade-Off between
Accuracy and Robustness [11.35810118757863]
Existing models that achieve state-of-the-art (SOTA) performance on both clean and adversarially-perturbed images rely on convolution operations conditioned with feature-wise linear modulation (FiLM) layers.
We present a fast learnable once-for-all adversarial training (FLOAT) algorithm, which instead of the existing FiLM-based conditioning, presents a unique weight conditioned learning that requires no additional layer.
In particular, we add scaled noise to the weight tensors that enables a trade-off between clean and adversarial performance.
arXiv Detail & Related papers (2022-03-28T19:25:36Z) - Federated Dynamic Sparse Training: Computing Less, Communicating Less,
Yet Learning Better [88.28293442298015]
Federated learning (FL) enables distribution of machine learning workloads from the cloud to resource-limited edge devices.
We develop, implement, and experimentally validate a novel FL framework termed Federated Dynamic Sparse Training (FedDST)
FedDST is a dynamic process that extracts and trains sparse sub-networks from the target full network.
arXiv Detail & Related papers (2021-12-18T02:26:38Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.