ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders
- URL: http://arxiv.org/abs/2303.12001v3
- Date: Wed, 02 Oct 2024 21:58:04 GMT
- Title: ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders
- Authors: Jefferson Hernandez, Ruben Villegas, Vicente Ordonez,
- Abstract summary: ViC-MAE is a model that combines Masked AutoEncoders (MAE) and contrastive learning.
We show that visual representations learned under ViC-MAE generalize well to both video and image classification tasks.
- Score: 11.727612242016871
- License:
- Abstract: We propose ViC-MAE, a model that combines both Masked AutoEncoders (MAE) and contrastive learning. ViC-MAE is trained using a global featured obtained by pooling the local representations learned under an MAE reconstruction loss and leveraging this representation under a contrastive objective across images and video frames. We show that visual representations learned under ViC-MAE generalize well to both video and image classification tasks. Particularly, ViC-MAE obtains state-of-the-art transfer learning performance from video to images on Imagenet-1k compared to the recently proposed OmniMAE by achieving a top-1 accuracy of 86% (+1.3% absolute improvement) when trained on the same data and 87.1% (+2.4% absolute improvement) when training on extra data. At the same time ViC-MAE outperforms most other methods on video benchmarks by obtaining 75.9% top-1 accuracy on the challenging Something something-v2 video benchmark . When training on videos and images from a diverse combination of datasets, our method maintains a balanced transfer-learning performance between video and image classification benchmarks, coming only as a close second to the best supervised method.
Related papers
- Efficient Image Pre-Training with Siamese Cropped Masked Autoencoders [89.12558126877532]
We propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE.
Our method exclusively considers pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video.
CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches.
arXiv Detail & Related papers (2024-03-26T16:04:19Z) - AV-MaskEnhancer: Enhancing Video Representations through Audio-Visual
Masked Autoencoder [3.8735222804007394]
We propose AV-MaskEnhancer for learning high-quality video representation by combining visual and audio information.
Our approach addresses the challenge by demonstrating the complementary nature of audio and video features in cross-modality content.
arXiv Detail & Related papers (2023-09-15T19:56:15Z) - HomE: Homography-Equivariant Video Representation Learning [62.89516761473129]
We propose a novel method for representation learning of multi-view videos.
Our method learns an implicit mapping between different views, culminating in a representation space that maintains the homography relationship between neighboring views.
On action classification, our method obtains 96.4% 3-fold accuracy on the UCF101 dataset, better than most state-of-the-art self-supervised learning methods.
arXiv Detail & Related papers (2023-06-02T15:37:43Z) - Masked Video Distillation: Rethinking Masked Feature Modeling for
Self-supervised Video Representation Learning [123.63301596019522]
Masked video distillation (MVD) is a simple yet effective two-stage masked feature modeling framework for video representation learning.
For the choice of teacher models, we observe that students taught by video teachers perform better on temporally-heavy video tasks.
We design a spatial-temporal co-teaching method for MVD to leverage the advantage of different teachers.
arXiv Detail & Related papers (2022-12-08T18:59:59Z) - Boosting Video Representation Learning with Multi-Faceted Integration [112.66127428372089]
Video content is multifaceted, consisting of objects, scenes, interactions or actions.
Existing datasets mostly label only one of the facets for model training, resulting in the video representation that biases to only one facet depending on the training dataset.
We propose a new learning framework, MUlti-Faceted Integration (MUFI), to aggregate facets from different datasets for learning a representation that could reflect the full spectrum of video content.
arXiv Detail & Related papers (2022-01-11T16:14:23Z) - ASCNet: Self-supervised Video Representation Learning with
Appearance-Speed Consistency [62.38914747727636]
We study self-supervised video representation learning, which is a challenging task due to 1) a lack of labels for explicit supervision and 2) unstructured and noisy visual information.
Existing methods mainly use contrastive loss with video clips as the instances and learn visual representation by discriminating instances from each other.
In this paper, we observe that the consistency between positive samples is the key to learn robust video representations.
arXiv Detail & Related papers (2021-06-04T08:44:50Z) - RSPNet: Relative Speed Perception for Unsupervised Video Representation
Learning [100.76672109782815]
We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only.
It is difficult to construct a suitable self-supervised task to well model both motion and appearance features.
We propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels.
arXiv Detail & Related papers (2020-10-27T16:42:50Z) - Self-supervised Video Representation Learning Using Inter-intra
Contrastive Framework [43.002621928500425]
We propose a self-supervised method to learn feature representations from videos.
Because video representation is important, we extend negative samples by introducing intra-negative samples.
We conduct experiments on video retrieval and video recognition tasks using the learned video representation.
arXiv Detail & Related papers (2020-08-06T09:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.