Automated deep learning segmentation of high-resolution 7 T postmortem
MRI for quantitative analysis of structure-pathology correlations in
neurodegenerative diseases
- URL: http://arxiv.org/abs/2303.12237v2
- Date: Tue, 17 Oct 2023 20:50:05 GMT
- Title: Automated deep learning segmentation of high-resolution 7 T postmortem
MRI for quantitative analysis of structure-pathology correlations in
neurodegenerative diseases
- Authors: Pulkit Khandelwal, Michael Tran Duong, Shokufeh Sadaghiani, Sydney
Lim, Amanda Denning, Eunice Chung, Sadhana Ravikumar, Sanaz Arezoumandan,
Claire Peterson, Madigan Bedard, Noah Capp, Ranjit Ittyerah, Elyse Migdal,
Grace Choi, Emily Kopp, Bridget Loja, Eusha Hasan, Jiacheng Li, Alejandra
Bahena, Karthik Prabhakaran, Gabor Mizsei, Marianna Gabrielyan, Theresa
Schuck, Winifred Trotman, John Robinson, Daniel Ohm, Edward B. Lee, John Q.
Trojanowski, Corey McMillan, Murray Grossman, David J. Irwin, John Detre, M.
Dylan Tisdall, Sandhitsu R. Das, Laura E.M. Wisse, David A. Wolk, Paul A.
Yushkevich
- Abstract summary: We present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm$3$ isotropic using a T2w sequence on a 7T whole-body MRI scanner.
We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm3 and 0.16 mm3 isotropic T2*w FLASH sequence at 7T.
- Score: 33.191270998887326
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Postmortem MRI allows brain anatomy to be examined at high resolution and to
link pathology measures with morphometric measurements. However, automated
segmentation methods for brain mapping in postmortem MRI are not well
developed, primarily due to limited availability of labeled datasets, and
heterogeneity in scanner hardware and acquisition protocols. In this work, we
present a high resolution of 135 postmortem human brain tissue specimens imaged
at 0.3 mm$^{3}$ isotropic using a T2w sequence on a 7T whole-body MRI scanner.
We developed a deep learning pipeline to segment the cortical mantle by
benchmarking the performance of nine deep neural architectures, followed by
post-hoc topological correction. We then segment four subcortical structures
(caudate, putamen, globus pallidus, and thalamus), white matter
hyperintensities, and the normal appearing white matter. We show generalizing
capabilities across whole brain hemispheres in different specimens, and also on
unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence
at 7T. We then compute localized cortical thickness and volumetric measurements
across key regions, and link them with semi-quantitative neuropathological
ratings. Our code, Jupyter notebooks, and the containerized executables are
publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn
Related papers
- Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7 tesla MRI in Alzheimer's disease and related dementias [32.61675068837929]
We present one-of-its-kind dataset of 82 ex vivo T2w whole brain hemispheres MRI at 0.3 mm isotropic resolution spanning Alzheimer's disease and related dementias.
We adapted and developed a fast and easy-to-use automated surface-based pipeline to parcellate, for the first time, ultra high-resolution ex vivo brain tissue at the native subject space resolution using the Desikan-Killiany-Tourville (DKT) brain atlas.
arXiv Detail & Related papers (2024-03-28T15:27:34Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
We present an encoder-decoder model for synthesising segmentations of the main cerebral arteries in the circle of Willis (CoW) from only T2 MRI.
It uses learned local attention maps generated by dilating the segmentation labels, which forces the network to only extract information from the T2 MRI relevant to synthesising the CoW.
arXiv Detail & Related papers (2023-08-24T15:32:27Z) - FastSurfer-HypVINN: Automated sub-segmentation of the hypothalamus and
adjacent structures on high-resolutional brain MRI [3.869627124798774]
We introduce a novel, fast, and fully automated deep learning method named HypVINN for sub-segmentation of the hypothalamus.
We extensively validate our model with respect to segmentation accuracy, generalizability, in-session test-retest reliability, and sensitivity to replicate hypothalamic volume effects.
arXiv Detail & Related papers (2023-08-24T12:26:38Z) - Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes [52.242103848335354]
We propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans.
Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans.
arXiv Detail & Related papers (2023-08-13T12:51:15Z) - Cortical analysis of heterogeneous clinical brain MRI scans for
large-scale neuroimaging studies [2.930354460501359]
Surface analysis of the cortex is ubiquitous in human neuroimaging with MRI, e.g., for cortical registration, parcellation, or thickness estimation.
Here we present the first method for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and pulse sequence.
arXiv Detail & Related papers (2023-05-02T23:36:06Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Gray Matter Segmentation in Ultra High Resolution 7 Tesla ex vivo T2w
MRI of Human Brain Hemispheres [9.196429840458629]
We present a high resolution 7 Tesla dataset of 32 ex vivo human brain specimens.
We benchmark the cortical mantle segmentation performance of nine neural network architectures.
We show excellent generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at different magnetic field strength and imaging sequences.
arXiv Detail & Related papers (2021-10-14T21:01:18Z) - 3D Reconstruction and Segmentation of Dissection Photographs for
MRI-free Neuropathology [2.4984854046383624]
We present methodology to reconstruct and segment full brain image volumes from brain dissection photographs.
The 3D reconstruction is achieved via a joint registration framework, which uses a reference volume other than MRI.
We evaluate our methods on a dataset with 24 brains, using Dice scores and volume correlations.
arXiv Detail & Related papers (2020-09-11T18:21:00Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.