MAIR: Multi-view Attention Inverse Rendering with 3D Spatially-Varying
Lighting Estimation
- URL: http://arxiv.org/abs/2303.12368v2
- Date: Mon, 27 Mar 2023 04:32:11 GMT
- Title: MAIR: Multi-view Attention Inverse Rendering with 3D Spatially-Varying
Lighting Estimation
- Authors: JunYong Choi and SeokYeong Lee and Haesol Park and Seung-Won Jung and
Ig-Jae Kim and Junghyun Cho
- Abstract summary: We propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, a SVBRDF, and 3D spatially-varying lighting.
Our experiments show that the proposed method achieves better performance than single-view-based methods, but also achieves robust performance on unseen real-world scene.
- Score: 13.325800282424598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scene-level inverse rendering framework that uses multi-view
images to decompose the scene into geometry, a SVBRDF, and 3D spatially-varying
lighting. Because multi-view images provide a variety of information about the
scene, multi-view images in object-level inverse rendering have been taken for
granted. However, owing to the absence of multi-view HDR synthetic dataset,
scene-level inverse rendering has mainly been studied using single-view image.
We were able to successfully perform scene-level inverse rendering using
multi-view images by expanding OpenRooms dataset and designing efficient
pipelines to handle multi-view images, and splitting spatially-varying
lighting. Our experiments show that the proposed method not only achieves
better performance than single-view-based methods, but also achieves robust
performance on unseen real-world scene. Also, our sophisticated 3D
spatially-varying lighting volume allows for photorealistic object insertion in
any 3D location.
Related papers
- MAIR++: Improving Multi-view Attention Inverse Rendering with Implicit Lighting Representation [17.133440382384578]
We propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, SVBRDF, and 3D spatially-varying lighting.
A novel framework called Multi-view Attention Inverse Rendering (MAIR) was recently introduced to improve the quality of scene-level inverse rendering.
arXiv Detail & Related papers (2024-08-13T08:04:23Z) - IRIS: Inverse Rendering of Indoor Scenes from Low Dynamic Range Images [32.83096814910201]
We present a method that recovers the physically based material properties and lighting of a scene from multi-view, low-dynamic-range (LDR) images.
Our method outperforms existing methods taking LDR images as input, and allows for highly realistic relighting and object insertion.
arXiv Detail & Related papers (2024-01-23T18:59:56Z) - S$^3$-NeRF: Neural Reflectance Field from Shading and Shadow under a
Single Viewpoint [22.42916940712357]
Our method learns a neural reflectance field to represent the 3D geometry and BRDFs of a scene.
Our method is capable of recovering 3D geometry, including both visible and invisible parts, of a scene from single-view images.
It supports applications like novel-view synthesis and relighting.
arXiv Detail & Related papers (2022-10-17T11:01:52Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering
in Indoor Scenes [99.76677232870192]
We show how a dense vision transformer, IRISformer, excels at both single-task and multi-task reasoning required for inverse rendering.
Specifically, we propose a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness and lighting from a single image of an indoor scene.
Our evaluations on benchmark datasets demonstrate state-of-the-art results on each of the above tasks, enabling applications like object insertion and material editing in a single unconstrained real image.
arXiv Detail & Related papers (2022-06-16T19:50:55Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - IBRNet: Learning Multi-View Image-Based Rendering [67.15887251196894]
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views.
By drawing on source views at render time, our method hearkens back to classic work on image-based rendering.
arXiv Detail & Related papers (2021-02-25T18:56:21Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.