Unsupervised Domain Adaptation for Training Event-Based Networks Using
Contrastive Learning and Uncorrelated Conditioning
- URL: http://arxiv.org/abs/2303.12424v1
- Date: Wed, 22 Mar 2023 09:51:08 GMT
- Title: Unsupervised Domain Adaptation for Training Event-Based Networks Using
Contrastive Learning and Uncorrelated Conditioning
- Authors: Dayuan Jian, Mohammad Rostami
- Abstract summary: Deep learning in event-based vision faces the challenge of annotated data scarcity due to recency of event cameras.
We develop an unsupervised domain adaptation algorithm for training a deep network for event-based data image classification.
- Score: 12.013345715187285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event-based cameras offer reliable measurements for preforming computer
vision tasks in high-dynamic range environments and during fast motion
maneuvers. However, adopting deep learning in event-based vision faces the
challenge of annotated data scarcity due to recency of event cameras.
Transferring the knowledge that can be obtained from conventional camera
annotated data offers a practical solution to this challenge. We develop an
unsupervised domain adaptation algorithm for training a deep network for
event-based data image classification using contrastive learning and
uncorrelated conditioning of data. Our solution outperforms the existing
algorithms for this purpose.
Related papers
- A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation [3.355813093377501]
Event cameras operate differently from traditional digital cameras, continuously capturing data and generating binary spikes that encode time, location, and light intensity.
This necessitates the development of innovative, spike-aware algorithms tailored for event cameras.
We propose a purely spike-driven spike transformer network for depth estimation from spiking camera data.
arXiv Detail & Related papers (2024-04-26T11:32:53Z) - Relating Events and Frames Based on Self-Supervised Learning and
Uncorrelated Conditioning for Unsupervised Domain Adaptation [23.871860648919593]
Event-based cameras provide accurate and high temporal resolution measurements for performing computer vision tasks.
Despite their advantages, utilizing deep learning for event-based vision encounters a significant obstacle due to the scarcity of annotated data.
We propose a new algorithm tailored for adapting a deep neural network trained on annotated frame-based data to generalize well on event-based unannotated data.
arXiv Detail & Related papers (2024-01-02T05:10:08Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Bridging the Gap between Events and Frames through Unsupervised Domain
Adaptation [57.22705137545853]
We propose a task transfer method that allows models to be trained directly with labeled images and unlabeled event data.
We leverage the generative event model to split event features into content and motion features.
Our approach unlocks the vast amount of existing image datasets for the training of event-based neural networks.
arXiv Detail & Related papers (2021-09-06T17:31:37Z) - Representation Learning for Event-based Visuomotor Policies [18.4767874925189]
We present an evental autocoder for unsupervised representation from asynchronous event data.
We show that it is feasible to learn compact representations fromtemporal event data to encode context.
We validate this framework of learning visuomotor policies by applying it to an obstacle avoidance scenario in simulation.
arXiv Detail & Related papers (2021-03-01T07:04:00Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Learning to Detect Objects with a 1 Megapixel Event Camera [14.949946376335305]
Event cameras encode visual information with high temporal precision, low data-rate, and high-dynamic range.
Due to the novelty of the field, the performance of event-based systems on many vision tasks is still lower compared to conventional frame-based solutions.
arXiv Detail & Related papers (2020-09-28T16:03:59Z) - Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem
Formulation [53.850686395708905]
Event-based cameras record an asynchronous stream of per-pixel brightness changes.
In this paper, we focus on single-layer architectures for representation learning from event data.
We show improvements of up to 9 % in the recognition accuracy compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-23T10:40:03Z) - Back to Event Basics: Self-Supervised Learning of Image Reconstruction
for Event Cameras via Photometric Constancy [0.0]
Event cameras are novel vision sensors that sample, in an asynchronous fashion, brightness increments with low latency and high temporal resolution.
We propose a novel, lightweight neural network for optical flow estimation that achieves high speed inference with only a minor drop in performance.
Results across multiple datasets show that the performance of the proposed self-supervised approach is in line with the state-of-the-art.
arXiv Detail & Related papers (2020-09-17T13:30:05Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.