Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training
- URL: http://arxiv.org/abs/2303.13563v1
- Date: Thu, 23 Mar 2023 07:57:32 GMT
- Title: Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training
- Authors: Hadjer Benmeziane, Amine Ziad Ounnoughene, Imane Hamzaoui, Younes
Bouhadjar
- Abstract summary: Spiking neural networks (SNNs) have gained attention as a promising alternative to traditional artificial neural networks (ANNs)
In this paper, we study the impact of skip connections on SNNs and propose a hyper parameter optimization technique that adapts models from ANN to SNN.
We demonstrate that optimizing the position, type, and number of skip connections can significantly improve the accuracy and efficiency of SNNs.
- Score: 0.8602553195689513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs) have gained attention as a promising
alternative to traditional artificial neural networks (ANNs) due to their
potential for energy efficiency and their ability to model spiking behavior in
biological systems. However, the training of SNNs is still a challenging
problem, and new techniques are needed to improve their performance. In this
paper, we study the impact of skip connections on SNNs and propose a
hyperparameter optimization technique that adapts models from ANN to SNN. We
demonstrate that optimizing the position, type, and number of skip connections
can significantly improve the accuracy and efficiency of SNNs by enabling
faster convergence and increasing information flow through the network. Our
results show an average +8% accuracy increase on CIFAR-10-DVS and DVS128
Gesture datasets adaptation of multiple state-of-the-art models.
Related papers
- Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks (ANNs)
In this paper, we provide a new perspective to summarize the theories and methods for training deep SNNs with high performance.
arXiv Detail & Related papers (2024-05-06T09:58:54Z) - Converting High-Performance and Low-Latency SNNs through Explicit Modelling of Residual Error in ANNs [27.46147049872907]
Spiking neural networks (SNNs) have garnered interest due to their energy efficiency and superior effectiveness on neuromorphic chips.
One of the mainstream approaches to implementing deep SNNs is the ANN-SNN conversion.
We propose a new approach based on explicit modeling of residual errors as additive noise.
arXiv Detail & Related papers (2024-04-26T14:50:46Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Optimising Event-Driven Spiking Neural Network with Regularisation and
Cutoff [33.91830001268308]
Spiking neural network (SNN) offers promising improvements in computational efficiency.
Current SNN training methodologies predominantly employ a fixed timestep approach.
We propose to consider cutoff in SNN, which can terminate SNN anytime during the inference to achieve efficient inference.
arXiv Detail & Related papers (2023-01-23T16:14:09Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
Spiking Neural Networks (SNNs) with their neuro-inspired event-driven processing can efficiently handle asynchronous data.
We propose an adaptive fully-spiking framework with learnable neuronal dynamics to alleviate the spike vanishing problem.
Our experiments on datasets show an average reduction of 13% in average endpoint error (AEE) compared to state-of-the-art ANNs.
arXiv Detail & Related papers (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
Spiking neural networks (SNNs) have been investigated as more biologically plausible and potentially more powerful models of neural computation.
We show how a novel surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields state-of-the-art for SNNs.
arXiv Detail & Related papers (2021-03-12T10:27:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
Spiking Neural Networks (SNNs) are a type of neuromorphic, or brain-inspired network.
SNNs are sparse, accessing very few weights, and typically only use addition operations instead of the more power-intensive multiply-and-accumulate operations.
In this work, we aim to overcome the limitations of TTFS-encoded neuromorphic systems.
arXiv Detail & Related papers (2020-06-03T15:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.