A biological sequence comparison algorithm using quantum computers
- URL: http://arxiv.org/abs/2303.13608v5
- Date: Thu, 20 Jul 2023 13:49:35 GMT
- Title: A biological sequence comparison algorithm using quantum computers
- Authors: B\"usra K\"osoglu-Kind, Robert Loredo, Michele Grossi, Christian
Bernecker, Jody M Burks, Rudiger Buchkremer
- Abstract summary: We present a method to display and analyze the similarity between two genome sequences on a quantum computer.
Inspired by human perception of vision and pixel representation of images on quantum computers, we leverage these techniques to implement a pairwise sequence analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Genetic information is encoded in a linear sequence of nucleotides,
represented by letters ranging from thousands to billions. Mutations refer to
changes in the DNA or RNA nucleotide sequence. Thus, mutation detection is
vital in all areas of biology and medicine. Careful monitoring of
virulence-enhancing mutations is essential. However, an enormous amount of
classical computing power is required to analyze genetic sequences of this
size. Inspired by human perception of vision and pixel representation of images
on quantum computers, we leverage these techniques to implement a pairwise
sequence analysis. The methodology has a potential advantage over classical
approaches and can be further applied to identify mutations and other
modifications in genetic sequences. We present a method to display and analyze
the similarity between two genome sequences on a quantum computer where a
similarity score is calculated to determine the similarity between nucleotides.
Related papers
- Compare Similarities Between DNA Sequences Using Permutation-Invariant Quantum Kernel [3.8926796690238694]
We propose a permutation-invariant variational quantum kernel method specifically designed for DNA comparison.
We show that our novel encoding method and parameterized layers used in the quantum kernel model can effectively capture the symmetric characteristics of the pairwise DNA sequence comparison task.
arXiv Detail & Related papers (2025-03-07T14:35:38Z) - Learning to Discover Regulatory Elements for Gene Expression Prediction [59.470991831978516]
Seq2Exp is a Sequence to Expression network designed to discover and extract regulatory elements that drive target gene expression.
Our approach captures the causal relationship between epigenomic signals, DNA sequences and their associated regulatory elements.
arXiv Detail & Related papers (2025-02-19T03:25:49Z) - Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Code is a comprehensive framework that spans different biological functions.
Life-Code achieves state-of-the-art performance on various tasks across three omics.
arXiv Detail & Related papers (2025-02-11T06:53:59Z) - ALPHAGMUT: A Rationale-Guided Alpha Shape Graph Neural Network to Evaluate Mutation Effects [8.331322657310292]
In this study, we introduce a novel rationale-guided graph neural network AlphaGMut to evaluate mutation effects.
We compute structural-, topological-, biophysical-, and sequence properties of the mutation sites, which are assigned as node attributes in the graph.
We demonstrate that AlphaGMut outperforms state-of-the-art methods, including DeepMind's AlphaMissense, in many performance metrics.
arXiv Detail & Related papers (2024-06-13T14:22:12Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Modified Multiple Sequence Alignment Algorithm on Quantum Annealers (MAQ) [0.0]
We propose a modified MSA algorithm on quantum annealers with applications in areas of bioinformatics and genetic sequencing.
We apply progressive alignment techniques to modify algorithms, achieving a linear reduction in spin usage whilst introducing more quantum complexs to the algorithm.
arXiv Detail & Related papers (2024-03-24T01:57:38Z) - Quantum gate algorithm for reference-guided DNA sequence alignment [0.0]
We present a novel quantum algorithm for reference-guided DNA sequence alignment modeled with gate-based quantum computing.
The algorithm is scalable, can be integrated into existing classical DNA sequencing systems and is intentionally structured to limit computational errors.
arXiv Detail & Related papers (2023-08-08T18:41:24Z) - HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution [76.97231739317259]
We present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level.
On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data.
arXiv Detail & Related papers (2023-06-27T20:46:34Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Using Signal Processing in Tandem With Adapted Mixture Models for
Classifying Genomic Signals [16.119729980200955]
We propose a novel technique that employs signal processing in tandem with Gaussian mixture models to improve the spectral representation of a sequence.
Our method outperforms a similar state-of-the-art method on established benchmark datasets by an absolute margin of 6.06% accuracy.
arXiv Detail & Related papers (2022-11-03T06:10:55Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
Inverse design of short single-stranded RNA and DNA sequences (aptamers) is the task of finding sequences that satisfy a set of desired criteria.
We propose to use an unsupervised machine learning model known as the Potts model to discover new, useful sequences with controllable sequence diversity.
arXiv Detail & Related papers (2022-08-10T13:30:58Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Quantum Genetic Algorithm with Individuals in Multiple Registers [0.0]
We propose a subroutine-based quantum genetic algorithm with individuals codified in independent registers.
This distinctive codification allows our proposal to depict all the fundamental elements characterizing genetic algorithms.
We study two paradigmatic examples, namely, the biomimetic cloning of quantum observables and the Buv zek-Hillery universal quantum cloning machine.
arXiv Detail & Related papers (2022-03-28T19:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.