Physics-informed PointNet: On how many irregular geometries can it solve
an inverse problem simultaneously? Application to linear elasticity
- URL: http://arxiv.org/abs/2303.13634v3
- Date: Mon, 18 Sep 2023 16:22:03 GMT
- Title: Physics-informed PointNet: On how many irregular geometries can it solve
an inverse problem simultaneously? Application to linear elasticity
- Authors: Ali Kashefi, Leonidas J. Guibas, Tapan Mukerji
- Abstract summary: Physics-informed PointNet (PIPN) is designed to fill this gap between PINNs and fully supervised learning models.
We show that PIPN predicts the solution of desired partial differential equations over a few hundred domains simultaneously.
Specifically, we show that PIPN predicts the solution of a plane stress problem over more than 500 domains with different geometries, simultaneously.
- Score: 58.44709568277582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regular physics-informed neural networks (PINNs) predict the solution of
partial differential equations using sparse labeled data but only over a single
domain. On the other hand, fully supervised learning models are first trained
usually over a few thousand domains with known solutions (i.e., labeled data)
and then predict the solution over a few hundred unseen domains.
Physics-informed PointNet (PIPN) is primarily designed to fill this gap between
PINNs (as weakly supervised learning models) and fully supervised learning
models. In this article, we demonstrate that PIPN predicts the solution of
desired partial differential equations over a few hundred domains
simultaneously, while it only uses sparse labeled data. This framework benefits
fast geometric designs in the industry when only sparse labeled data are
available. Particularly, we show that PIPN predicts the solution of a plane
stress problem over more than 500 domains with different geometries,
simultaneously. Moreover, we pioneer implementing the concept of remarkable
batch size (i.e., the number of geometries fed into PIPN at each sub-epoch)
into PIPN. Specifically, we try batch sizes of 7, 14, 19, 38, 76, and 133.
Additionally, the effect of the PIPN size, symmetric function in the PIPN
architecture, and static and dynamic weights for the component of the sparse
labeled data in the loss function are investigated.
Related papers
- Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
We present a novel physics-informed neural operator method to solve parametrized boundary value problems without labeled data.
Our numerical experiments show the effectiveness of parametrized complex geometries and unbounded problems.
arXiv Detail & Related papers (2023-08-24T17:29:57Z) - Physics-Informed Boundary Integral Networks (PIBI-Nets): A Data-Driven Approach for Solving Partial Differential Equations [1.6435014180036467]
Partial differential equations (PDEs) are widely used to describe relevant phenomena in dynamical systems.
In high-dimensional settings, PINNs often suffer from computational problems because they require dense collocation points over the entire computational domain.
We present Physics-Informed Boundary Networks (PIBI-Nets) as a data-driven approach for solving PDEs in one dimension less than the original problem space.
arXiv Detail & Related papers (2023-08-18T14:03:34Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - $\Delta$-PINNs: physics-informed neural networks on complex geometries [2.1485350418225244]
Physics-informed neural networks (PINNs) have demonstrated promise in solving forward and inverse problems involving partial differential equations.
To date, there is no clear way to inform PINNs about the topology of the domain where the problem is being solved.
We propose a novel positional encoding mechanism for PINNs based on the eigenfunctions of the Laplace-Beltrami operator.
arXiv Detail & Related papers (2022-09-08T18:03:19Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - IDRLnet: A Physics-Informed Neural Network Library [9.877979064734802]
Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems.
This paper introduces IDRLnet, a Python toolbox for modeling and solving problems through PINN systematically.
arXiv Detail & Related papers (2021-07-09T09:18:35Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.