Interpretable Anomaly Detection via Discrete Optimization
- URL: http://arxiv.org/abs/2303.14111v1
- Date: Fri, 24 Mar 2023 16:19:15 GMT
- Title: Interpretable Anomaly Detection via Discrete Optimization
- Authors: Simon Lutz, Florian Wittbold, Simon Dierl, Benedikt B\"oing, Falk
Howar, Barbara K\"onig, Emmanuel M\"uller, Daniel Neider
- Abstract summary: We propose a framework for learning inherently interpretable anomaly detectors from sequential data.
We show that this problem is computationally hard and develop two learning algorithms based on constraint optimization.
Using a prototype implementation, we demonstrate that our approach shows promising results in terms of accuracy and F1 score.
- Score: 1.7150329136228712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is essential in many application domains, such as cyber
security, law enforcement, medicine, and fraud protection. However, the
decision-making of current deep learning approaches is notoriously hard to
understand, which often limits their practical applicability. To overcome this
limitation, we propose a framework for learning inherently interpretable
anomaly detectors from sequential data. More specifically, we consider the task
of learning a deterministic finite automaton (DFA) from a given multi-set of
unlabeled sequences. We show that this problem is computationally hard and
develop two learning algorithms based on constraint optimization. Moreover, we
introduce novel regularization schemes for our optimization problems that
improve the overall interpretability of our DFAs. Using a prototype
implementation, we demonstrate that our approach shows promising results in
terms of accuracy and F1 score.
Related papers
- Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs [58.24692529185971]
We introduce a comprehensive auditing framework for unlearning evaluation comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods.<n>We evaluate the effectiveness and robustness of different unlearning strategies.
arXiv Detail & Related papers (2025-05-29T09:19:07Z) - Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
This paper examines a crucial subset of problems where both the objective and constraint functions are weakly convex.
Existing methods often face limitations, including slow convergence rates or reliance on double-loop designs.
We introduce a novel single-loop penalty-based algorithm to overcome these challenges.
arXiv Detail & Related papers (2025-04-21T17:15:48Z) - Learning Quantitative Automata Modulo Theories [17.33092604696224]
We present QUINTIC, an active learning algorithm, wherein the learner infers a valid automaton through deductive reasoning.
Our evaluations utilize theory of rationals in order to learn summation, discounted summation, product, and classification quantitative automata.
arXiv Detail & Related papers (2024-11-15T21:51:14Z) - On Uncertainty Quantification for Near-Bayes Optimal Algorithms [2.622066970118316]
We show that it is possible to recover the Bayesian posterior defined by the task distribution, which is unknown but optimal in this setting, by building a martingale posterior using the algorithm.
Experiments based on a variety of non-NN and NN algorithms demonstrate the efficacy of our method.
arXiv Detail & Related papers (2024-03-28T12:42:25Z) - Learning Adversarial MDPs with Stochastic Hard Constraints [37.24692425018]
We study online learning problems in constrained decision processes with adversarial losses and hard constraints.
We design an algorithm that achieves sublinear regret while ensuring that the constraints are satisfied at every episode with high probability.
arXiv Detail & Related papers (2024-03-06T12:49:08Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
This paper introduces a general framework for learning from weak supervision (GLWS) with a novel algorithm.
Central to GLWS is an Expectation-Maximization (EM) formulation, adeptly accommodating various weak supervision sources.
We also present an advanced algorithm that significantly simplifies the EM computational demands.
arXiv Detail & Related papers (2024-02-02T21:48:50Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Modelling Concurrency Bugs Using Machine Learning [0.0]
This project aims to compare both common and recent machine learning approaches.
We define a synthetic dataset that we generate with the scope of simulating real-life (concurrent) programs.
We formulate hypotheses about fundamental limits of various machine learning model types.
arXiv Detail & Related papers (2023-05-08T17:30:24Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
In this paper, we show how such a systematic exploration of algorithmic options can be done using parameterized complexity analysis.
We show that none of our problems can be solved efficiently either in general or relative to a number of (often simultaneous) restrictions on environments, demonstrations, and policies.
arXiv Detail & Related papers (2022-05-10T15:54:06Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
Anomaly detection becomes increasingly important for the dependability and serviceability of IT services.
Existing unsupervised methods need anomaly examples to obtain a suitable decision boundary.
We develop A2Log, which is an unsupervised anomaly detection method consisting of two steps: Anomaly scoring and anomaly decision.
arXiv Detail & Related papers (2021-09-20T13:40:21Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Learning by Ignoring, with Application to Domain Adaptation [10.426533624387305]
We propose a novel machine learning framework referred to as learning by ignoring (LBI)
Our framework automatically identifies pretraining data examples that have large domain shift from the target distribution by learning an ignoring variable for each example and excludes them from the pretraining process.
A gradient-based algorithm is developed to efficiently solve the three-level optimization problem in LBI.
arXiv Detail & Related papers (2020-12-28T15:33:41Z) - Learning Implicitly with Noisy Data in Linear Arithmetic [94.66549436482306]
We extend implicit learning in PAC-Semantics to handle intervals and threshold uncertainty in the language of linear arithmetic.
We show that our implicit approach to learning optimal linear programming objective constraints significantly outperforms an explicit approach in practice.
arXiv Detail & Related papers (2020-10-23T19:08:46Z) - AutoML to Date and Beyond: Challenges and Opportunities [30.60364966752454]
AutoML tools aim to make machine learning accessible for non-machine learning experts.
We introduce a new classification system for AutoML systems.
We lay out a roadmap for the future, pinpointing the research required to further automate the end-to-end machine learning pipeline.
arXiv Detail & Related papers (2020-10-21T06:08:21Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
We present ISA, an approach for learning and exploiting subgoals in episodic reinforcement learning (RL) tasks.
ISA interleaves reinforcement learning with the induction of a subgoal automaton, an automaton whose edges are labeled by the task's subgoals.
A subgoal automaton also consists of two special states: a state indicating the successful completion of the task, and a state indicating that the task has finished without succeeding.
arXiv Detail & Related papers (2020-09-08T16:42:55Z) - Managing caching strategies for stream reasoning with reinforcement
learning [18.998260813058305]
Stream reasoning allows efficient decision-making over continuously changing data.
We suggest a novel approach that uses the Conflict-Driven Constraint Learning (CDCL) to efficiently update legacy solutions.
In particular, we study the applicability of reinforcement learning to continuously assess the utility of learned constraints.
arXiv Detail & Related papers (2020-08-07T15:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.