Balancing policy constraint and ensemble size in uncertainty-based
offline reinforcement learning
- URL: http://arxiv.org/abs/2303.14716v1
- Date: Sun, 26 Mar 2023 13:03:11 GMT
- Title: Balancing policy constraint and ensemble size in uncertainty-based
offline reinforcement learning
- Authors: Alex Beeson and Giovanni Montana
- Abstract summary: We study the role of policy constraints as a mechanism for regulating uncertainty.
By incorporating behavioural cloning into policy updates, we show that sufficient penalisation can be achieved with a much smaller ensemble size.
We show how such an approach can facilitate stable online fine tuning, allowing for continued policy improvement while avoiding severe performance drops.
- Score: 7.462336024223669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning agents seek optimal policies from fixed data
sets. With environmental interaction prohibited, agents face significant
challenges in preventing errors in value estimates from compounding and
subsequently causing the learning process to collapse. Uncertainty estimation
using ensembles compensates for this by penalising high-variance value
estimates, allowing agents to learn robust policies based on data-driven
actions. However, the requirement for large ensembles to facilitate sufficient
penalisation results in significant computational overhead. In this work, we
examine the role of policy constraints as a mechanism for regulating
uncertainty, and the corresponding balance between level of constraint and
ensemble size. By incorporating behavioural cloning into policy updates, we
show empirically that sufficient penalisation can be achieved with a much
smaller ensemble size, substantially reducing computational demand while
retaining state-of-the-art performance on benchmarking tasks. Furthermore, we
show how such an approach can facilitate stable online fine tuning, allowing
for continued policy improvement while avoiding severe performance drops.
Related papers
- Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
In Constrained Reinforcement Learning (CRL), agents explore the environment to learn the optimal policy while satisfying constraints.
We propose a theoretically guaranteed penalty function method, Exterior Penalty Policy Optimization (EPO), with adaptive penalties generated by a Penalty Metric Network (PMN)
PMN responds appropriately to varying degrees of constraint violations, enabling efficient constraint satisfaction and safe exploration.
arXiv Detail & Related papers (2024-07-22T10:57:32Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
We study offline reinforcement learning (RL) which seeks to learn a good policy based on a fixed, pre-collected dataset.
We propose a bi-level structured policy optimization algorithm that models a hierarchical interaction between the policy (upper-level) and the value function (lower-level)
We evaluate our model using a blend of synthetic, benchmark, and real-world datasets for offline RL, showing that it performs competitively with state-of-the-art methods.
arXiv Detail & Related papers (2023-10-10T02:45:50Z) - Mitigating Off-Policy Bias in Actor-Critic Methods with One-Step
Q-learning: A Novel Correction Approach [0.0]
We introduce a novel policy similarity measure to mitigate the effects of such discrepancy in continuous control.
Our method offers an adequate single-step off-policy correction that is applicable to deterministic policy networks.
arXiv Detail & Related papers (2022-08-01T11:33:12Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - BRAC+: Improved Behavior Regularized Actor Critic for Offline
Reinforcement Learning [14.432131909590824]
Offline Reinforcement Learning aims to train effective policies using previously collected datasets.
Standard off-policy RL algorithms are prone to overestimations of the values of out-of-distribution (less explored) actions.
We improve the behavior regularized offline reinforcement learning and propose BRAC+.
arXiv Detail & Related papers (2021-10-02T23:55:49Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z) - Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement
Learning [70.01650994156797]
Off- evaluation of sequential decision policies from observational data is necessary in batch reinforcement learning such as education healthcare.
We develop an approach that estimates the bounds of a given policy.
We prove convergence to the sharp bounds as we collect more confounded data.
arXiv Detail & Related papers (2020-02-11T16:18:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.