Disruption Precursor Onset Time Study Based on Semi-supervised Anomaly
Detection
- URL: http://arxiv.org/abs/2303.14965v1
- Date: Mon, 27 Mar 2023 07:54:56 GMT
- Title: Disruption Precursor Onset Time Study Based on Semi-supervised Anomaly
Detection
- Authors: Xinkun Ai, Wei Zheng, Ming Zhang, Dalong Chen, Chengshuo Shen, Bihao
Guo, Bingjia Xiao, Yu Zhong, Nengchao Wang, Zhoujun Yang, Zhipeng Chen,
Zhongyong Chen, Yonghua Ding, Yuan Pan, and J-TEXT team
- Abstract summary: We present a disruption prediction method based on anomaly detection that overcomes the drawbacks of unbalanced positive and negative data samples.
We optimize precursor labeling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors.
- Score: 6.287037295927318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The full understanding of plasma disruption in tokamaks is currently lacking,
and data-driven methods are extensively used for disruption prediction.
However, most existing data-driven disruption predictors employ supervised
learning techniques, which require labeled training data. The manual labeling
of disruption precursors is a tedious and challenging task, as some precursors
are difficult to accurately identify, limiting the potential of machine
learning models. To address this issue, commonly used labeling methods assume
that the precursor onset occurs at a fixed time before the disruption, which
may not be consistent for different types of disruptions or even the same type
of disruption, due to the different speeds at which plasma instabilities
escalate. This leads to mislabeled samples and suboptimal performance of the
supervised learning predictor. In this paper, we present a disruption
prediction method based on anomaly detection that overcomes the drawbacks of
unbalanced positive and negative data samples and inaccurately labeled
disruption precursor samples. We demonstrate the effectiveness and reliability
of anomaly detection predictors based on different algorithms on J-TEXT and
EAST to evaluate the reliability of the precursor onset time inferred by the
anomaly detection predictor. The precursor onset times inferred by these
predictors reveal that the labeling methods have room for improvement as the
onset times of different shots are not necessarily the same. Finally, we
optimize precursor labeling using the onset times inferred by the anomaly
detection predictor and test the optimized labels on supervised learning
disruption predictors. The results on J-TEXT and EAST show that the models
trained on the optimized labels outperform those trained on fixed onset time
labels.
Related papers
- Unsupervised Time Series Anomaly Prediction with Importance-based Generative Contrastive Learning [13.082961588929606]
Time series anomaly prediction plays an essential role in many real-world scenarios, such as environmental prevention and prompt maintenance of cyber-physical systems.
Existing time series anomaly prediction methods mainly require supervised training with plenty of manually labeled data.
In this paper, we study a novel problem of unsupervised time series anomaly prediction.
arXiv Detail & Related papers (2024-10-22T10:46:36Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - Calibrated One-class Classification for Unsupervised Time Series Anomaly Detection [27.15951068292889]
This paper proposes one-class classification for anomaly detection.
It realizes contamination-tolerant, anomaly-informed learning of data normality.
Our model achieves substantial improvement over sixteen state-of-the-art contenders.
arXiv Detail & Related papers (2022-07-25T13:43:13Z) - Semi-supervised Contrastive Outlier removal for Pseudo Expectation
Maximization (SCOPE) [2.33877878310217]
We present a new approach to suppress confounding errors through a method we describe as Semi-supervised Contrastive Outlier removal for Pseudo Expectation Maximization (SCOPE)
Our results show that SCOPE greatly improves semi-supervised classification accuracy over a baseline, and furthermore when combined with consistency regularization achieves the highest reported accuracy for the semi-supervised CIFAR-10 classification task using 250 and 4000 labeled samples.
arXiv Detail & Related papers (2022-06-28T19:32:50Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
Minimizing prediction uncertainty on unlabeled data is a key factor to achieve good performance in semi-supervised learning.
This paper proposes a dual mechanism, named ADaptive Sharpening (ADS), which first applies a soft-threshold to adaptively mask out determinate and negligible predictions.
ADS significantly improves the state-of-the-art SSL methods by making it a plug-in.
arXiv Detail & Related papers (2021-12-15T15:17:02Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
In practice, it may make sense to ignore benign shifts, under which the performance of a deployed model does not degrade substantially.
We argue that a sensible method for firing off a warning has to both (a) detect harmful shifts while ignoring benign ones, and (b) allow continuous monitoring of model performance without increasing the false alarm rate.
arXiv Detail & Related papers (2021-10-12T17:21:41Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.