Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
- URL: http://arxiv.org/abs/2303.15647v2
- Date: Fri, 22 Nov 2024 05:02:26 GMT
- Title: Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
- Authors: Vladislav Lialin, Vijeta Deshpande, Xiaowei Yao, Anna Rumshisky,
- Abstract summary: This paper presents a systematic overview of parameter-efficient fine-tuning methods, covering over 50 papers published between early 2019 and mid-2024.
We provide a taxonomy that covers a broad range of methods and present a detailed method comparison.
We also conduct an extensive head-to-head experimental comparison of 15 diverse PEFT methods, evaluating their performance and efficiency on models up to 11B parameters.
- Score: 10.51168925267033
- License:
- Abstract: This paper presents a systematic overview of parameter-efficient fine-tuning methods, covering over 50 papers published between early 2019 and mid-2024. These methods aim to address the challenges of fine-tuning large language models by training only a small subset of parameters. We provide a taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency in fine-tuning multibillion-scale language models. We also conduct an extensive head-to-head experimental comparison of 15 diverse PEFT methods, evaluating their performance and efficiency on models up to 11B parameters. Our findings reveal that methods previously shown to surpass a strong LoRA baseline face difficulties in resource-constrained settings, where hyperparameter optimization is limited and the network is fine-tuned only for a few epochs. Finally, we provide a set of practical recommendations for using PEFT methods and outline potential future research directions.
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Parameter Efficient Fine Tuning: A Comprehensive Analysis Across Applications [0.7421845364041001]
The rise of deep learning has marked significant progress in fields such as computer vision, natural language processing, and medical imaging.
Traditional fine-tuning methods, involving adjustments to all parameters, face challenges due to high computational and memory demands.
This review examines Efficient Fine-Tuning (PEFT) techniques, which selectively update parameters to balance computational efficiency with performance.
arXiv Detail & Related papers (2024-04-21T02:26:15Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models:
A Critical Review and Assessment [12.674032145667763]
We present a comprehensive and systematic review of Efficient Fine-Tuning (PEFT) methods for pretrained language models (PLMs)
PEFT offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning.
We conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency.
arXiv Detail & Related papers (2023-12-19T13:31:24Z) - Empirical Analysis of the Strengths and Weaknesses of PEFT Techniques
for LLMs [1.867982979635437]
We provide a benchmark of various PEFT techniques and evaluate model performance across different data scales.
Contrary to popular belief, we empirically prove that PEFT techniques converge slower than full tuning in low data scenarios.
We further optimize these PEFT techniques by selectively choosing which parts of the model to train, and find that these techniques can be applied with significantly fewer parameters.
arXiv Detail & Related papers (2023-04-28T17:39:49Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Towards a Unified View of Parameter-Efficient Transfer Learning [108.94786930869473]
Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP.
Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance.
We break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them.
arXiv Detail & Related papers (2021-10-08T20:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.