SDAT: Sub-Dataset Alternation Training for Improved Image Demosaicing
- URL: http://arxiv.org/abs/2303.15792v2
- Date: Mon, 12 Feb 2024 10:04:42 GMT
- Title: SDAT: Sub-Dataset Alternation Training for Improved Image Demosaicing
- Authors: Yuval Becker, Raz Z. Nossek, Tomer Peleg
- Abstract summary: In data centric approaches, such as deep learning, the distribution of the dataset used for training can impose a bias on the networks' outcome.
Most deep learning approaches address this challenge by utilizing specific losses or designing special network architectures.
We propose S DAT, Sub-Dataset Alternation Training, that tackles the problem from a training protocol perspective.
- Score: 1.4623192580567588
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image demosaicing is an important step in the image processing pipeline for
digital cameras. In data centric approaches, such as deep learning, the
distribution of the dataset used for training can impose a bias on the
networks' outcome. For example, in natural images most patches are smooth, and
high-content patches are much rarer. This can lead to a bias in the performance
of demosaicing algorithms. Most deep learning approaches address this challenge
by utilizing specific losses or designing special network architectures. We
propose a novel approach, SDAT, Sub-Dataset Alternation Training, that tackles
the problem from a training protocol perspective. SDAT is comprised of two
essential phases. In the initial phase, we employ a method to create
sub-datasets from the entire dataset, each inducing a distinct bias. The
subsequent phase involves an alternating training process, which uses the
derived sub-datasets in addition to training also on the entire dataset. SDAT
can be applied regardless of the chosen architecture as demonstrated by various
experiments we conducted for the demosaicing task. The experiments are
performed across a range of architecture sizes and types, namely CNNs and
transformers. We show improved performance in all cases. We are also able to
achieve state-of-the-art results on three highly popular image demosaicing
benchmarks.
Related papers
- Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - Data-Free Sketch-Based Image Retrieval [56.96186184599313]
We propose Data-Free (DF)-SBIR, where pre-trained, single-modality classification models have to be leveraged to learn cross-modal metric-space for retrieval without access to any training data.
We present a methodology for DF-SBIR, which can leverage knowledge from models independently trained to perform classification on photos and sketches.
Our method also achieves mAPs competitive with data-dependent approaches, all the while requiring no training data.
arXiv Detail & Related papers (2023-03-14T10:34:07Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
We present a novel data-efficient semi-supervised framework to improve the generalization of image captioning models.
Our proposed method trains a captioner to learn from a paired data and to progressively associate unpaired data.
Our extensive and comprehensive empirical results both on (1) image-based and (2) dense region-based captioning datasets followed by comprehensive analysis on the scarcely-paired dataset.
arXiv Detail & Related papers (2023-01-26T15:25:43Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - Feature transforms for image data augmentation [74.12025519234153]
In image classification, many augmentation approaches utilize simple image manipulation algorithms.
In this work, we build ensembles on the data level by adding images generated by combining fourteen augmentation approaches.
Pretrained ResNet50 networks are finetuned on training sets that include images derived from each augmentation method.
arXiv Detail & Related papers (2022-01-24T14:12:29Z) - Realistic Image Normalization for Multi-Domain Segmentation [7.856339385917824]
This paper revisits the conventional image normalization approach by instead learning a common normalizing function across multiple datasets.
Jointly normalizing multiple datasets is shown to yield consistent normalized images as well as an improved image segmentation.
Our method can also enhance data availability by increasing the number of samples available when learning from multiple imaging domains.
arXiv Detail & Related papers (2020-09-29T13:57:04Z) - Fast ultrasonic imaging using end-to-end deep learning [1.0266286487433585]
Deep neural networks (DNNs) are being used for the data pre-processing and the image post-processing steps separately.
We propose a novel deep learning architecture that integrates all three steps to enable end-to-end training.
arXiv Detail & Related papers (2020-09-04T13:53:46Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Extracting dispersion curves from ambient noise correlations using deep
learning [1.0237120900821557]
We present a machine-learning approach to classifying the phases of surface wave dispersion curves.
Standard FTAN analysis of surfaces observed on an array of receivers is converted to an image.
We use a convolutional neural network (U-net) architecture with a supervised learning objective and incorporate transfer learning.
arXiv Detail & Related papers (2020-02-05T23:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.