Automated wildlife image classification: An active learning tool for
ecological applications
- URL: http://arxiv.org/abs/2303.15823v3
- Date: Wed, 2 Aug 2023 16:04:47 GMT
- Title: Automated wildlife image classification: An active learning tool for
ecological applications
- Authors: Ludwig Bothmann, Lisa Wimmer, Omid Charrakh, Tobias Weber, Hendrik
Edelhoff, Wibke Peters, Hien Nguyen, Caryl Benjamin, Annette Menzel
- Abstract summary: Wildlife camera trap images are being used extensively to investigate animal abundance, habitat associations, and behavior.
Artificial intelligence systems can take over this task but usually need a large number of already-labeled training images to achieve sufficient performance.
We propose a label-efficient learning strategy that enables researchers with small or medium-sized image databases to leverage the potential of modern machine learning.
- Score: 0.44970015278813025
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wildlife camera trap images are being used extensively to investigate animal
abundance, habitat associations, and behavior, which is complicated by the fact
that experts must first classify the images manually. Artificial intelligence
systems can take over this task but usually need a large number of
already-labeled training images to achieve sufficient performance. This
requirement necessitates human expert labor and poses a particular challenge
for projects with few cameras or short durations. We propose a label-efficient
learning strategy that enables researchers with small or medium-sized image
databases to leverage the potential of modern machine learning, thus freeing
crucial resources for subsequent analyses.
Our methodological proposal is two-fold: (1) We improve current strategies of
combining object detection and image classification by tuning the
hyperparameters of both models. (2) We provide an active learning (AL) system
that allows training deep learning models very efficiently in terms of required
human-labeled training images. We supply a software package that enables
researchers to use these methods directly and thereby ensure the broad
applicability of the proposed framework in ecological practice.
We show that our tuning strategy improves predictive performance. We
demonstrate how the AL pipeline reduces the amount of pre-labeled data needed
to achieve a specific predictive performance and that it is especially valuable
for improving out-of-sample predictive performance.
We conclude that the combination of tuning and AL increases predictive
performance substantially. Furthermore, we argue that our work can broadly
impact the community through the ready-to-use software package provided.
Finally, the publication of our models tailored to European wildlife data
enriches existing model bases mostly trained on data from Africa and North
America.
Related papers
- Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe.
Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts.
Reducing the reliance on costly labelled data has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor.
arXiv Detail & Related papers (2023-11-02T08:32:00Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - LiT Tuned Models for Efficient Species Detection [22.3395465641384]
Our paper introduces a simple methodology for adapting any fine-grained image classification dataset for distributed vision-language pretraining.
We implement this methodology on the challenging iNaturalist-2021 dataset, comprised of approximately 2.7 million images of macro-organisms across 10,000 classes.
Our model (trained using a new method called locked-image text tuning) uses a pre-trained, frozen vision representation, proving that language alignment alone can attain strong transfer learning performance.
arXiv Detail & Related papers (2023-02-12T20:36:55Z) - Rare Wildlife Recognition with Self-Supervised Representation Learning [0.0]
We present a methodology to reduce the amount of required training data by resorting to self-supervised pretraining.
We show that a combination of MoCo, CLD, and geometric augmentations outperforms conventional models pretrained on ImageNet by a large margin.
arXiv Detail & Related papers (2022-10-29T17:57:38Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
Effective conservation actions require effective population monitoring.
Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive.
Counting animals from such data is challenging, particularly when densely packed in noisy images.
Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals.
arXiv Detail & Related papers (2021-04-30T13:02:19Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Multi-task pre-training of deep neural networks for digital pathology [8.74883469030132]
We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images.
We show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance.
arXiv Detail & Related papers (2020-05-05T08:50:17Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.