Structured Epipolar Matcher for Local Feature Matching
- URL: http://arxiv.org/abs/2303.16646v3
- Date: Thu, 13 Apr 2023 04:16:35 GMT
- Title: Structured Epipolar Matcher for Local Feature Matching
- Authors: Jiahao Chang, Jiahuan Yu, Tianzhu Zhang
- Abstract summary: Local feature matching is challenging due to textureless and repetitive patterns.
We propose Structured Epipolar Matcher (SEM) for local feature matching.
SEM can leverage the geometric information in an iterative matching way.
- Score: 39.996313784074225
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Local feature matching is challenging due to textureless and repetitive
patterns. Existing methods focus on using appearance features and global
interaction and matching, while the importance of geometry priors in local
feature matching has not been fully exploited. Different from these methods, in
this paper, we delve into the importance of geometry prior and propose
Structured Epipolar Matcher (SEM) for local feature matching, which can
leverage the geometric information in an iterative matching way. The proposed
model enjoys several merits. First, our proposed Structured Feature Extractor
can model the relative positional relationship between pixels and
high-confidence anchor points. Second, our proposed Epipolar Attention and
Matching can filter out irrelevant areas by utilizing the epipolar constraint.
Extensive experimental results on five standard benchmarks demonstrate the
superior performance of our SEM compared to state-of-the-art methods. Project
page: https://sem2023.github.io.
Related papers
- Geometry-aware Feature Matching for Large-Scale Structure from Motion [10.645087195983201]
We introduce geometry cues in addition to color cues to fill gaps when there is less overlap in large-scale scenarios.
Our approach ensures that the denser correspondences from detector-free methods are geometrically consistent and more accurate.
It outperforms state-of-the-art feature matching methods on benchmark datasets.
arXiv Detail & Related papers (2024-09-03T21:41:35Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We also develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
Our proposed ReSFU framework consistently achieves satisfactory performance on different segmentation applications.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
We propose a new technique, based on graph Laplacian eigenmaps, to match point clouds by taking into account fine local structures.
To deal with the order and sign ambiguity of Laplacian eigenmaps, we introduce a new operator, called Coupled Laplacian.
We show that the similarity between those aligned high-dimensional spaces provides a locally meaningful score to match shapes.
arXiv Detail & Related papers (2024-02-27T10:10:12Z) - Adaptive Spot-Guided Transformer for Consistent Local Feature Matching [64.30749838423922]
We propose Adaptive Spot-Guided Transformer (ASTR) for local feature matching.
ASTR models the local consistency and scale variations in a unified coarse-to-fine architecture.
arXiv Detail & Related papers (2023-03-29T12:28:01Z) - Guide Local Feature Matching by Overlap Estimation [9.387323456222823]
We introduce a novel Overlap Estimation method conditioned on image pairs with TRansformer, named OETR.
OETR performs overlap estimation in a two-step process of feature correlation and then overlap regression.
Experiments show that OETR can boost state-of-the-art local feature matching performance substantially.
arXiv Detail & Related papers (2022-02-18T07:11:36Z) - PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation [96.76882806139251]
We propose a point-wise affinity propagation module based on the Feature Pyramid Network (FPN) framework, named PointFlow.
Rather than dense affinity learning, a sparse affinity map is generated upon selected points between the adjacent features.
Experimental results on three different aerial segmentation datasets suggest that the proposed method is more effective and efficient than state-of-the-art general semantic segmentation methods.
arXiv Detail & Related papers (2021-03-11T09:42:32Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Multi-View Optimization of Local Feature Geometry [70.18863787469805]
We address the problem of refining the geometry of local image features from multiple views without known scene or camera geometry.
Our proposed method naturally complements the traditional feature extraction and matching paradigm.
We show that our method consistently improves the triangulation and camera localization performance for both hand-crafted and learned local features.
arXiv Detail & Related papers (2020-03-18T17:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.