Who You Play Affects How You Play: Predicting Sports Performance Using
Graph Attention Networks With Temporal Convolution
- URL: http://arxiv.org/abs/2303.16741v1
- Date: Wed, 29 Mar 2023 14:48:51 GMT
- Title: Who You Play Affects How You Play: Predicting Sports Performance Using
Graph Attention Networks With Temporal Convolution
- Authors: Rui Luo and Vikram Krishnamurthy
- Abstract summary: This study presents a novel deep learning method, called GATv2-GCN, for predicting player performance in sports.
We use a graph attention network to capture the attention that each player pays to each other, allowing for more accurate modeling.
We evaluate the performance of our model using real-world sports data, demonstrating its effectiveness in predicting player performance.
- Score: 29.478765505215538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a novel deep learning method, called GATv2-GCN, for
predicting player performance in sports. To construct a dynamic player
interaction graph, we leverage player statistics and their interactions during
gameplay. We use a graph attention network to capture the attention that each
player pays to each other, allowing for more accurate modeling of the dynamic
player interactions. To handle the multivariate player statistics time series,
we incorporate a temporal convolution layer, which provides the model with
temporal predictive power. We evaluate the performance of our model using
real-world sports data, demonstrating its effectiveness in predicting player
performance. Furthermore, we explore the potential use of our model in a sports
betting context, providing insights into profitable strategies that leverage
our predictive power. The proposed method has the potential to advance the
state-of-the-art in player performance prediction and to provide valuable
insights for sports analytics and betting industries.
Related papers
- Capturing Momentum: Tennis Match Analysis Using Machine Learning and Time Series Theory [0.9449650062296823]
This paper represents an analysis on the momentum of tennis match.
We First use hidden markov models to predict the momentum which is defined as the performance of players.
Then we use Xgboost to prove the significance of momentum.
arXiv Detail & Related papers (2024-04-20T07:11:06Z) - Predicting Outcomes in Video Games with Long Short Term Memory Networks [0.39723189359605243]
Our work attempts to enhance audience engagement within video game tournaments by introducing a real-time method of predicting wins.
As a proof of concept, we evaluate our model's performance within a classic, two-player arcade game, Super Street Fighter II Turbo.
arXiv Detail & Related papers (2024-02-24T22:36:23Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Understanding why shooters shoot -- An AI-powered engine for basketball
performance profiling [70.54015529131325]
Basketball is dictated by many variables, such as playstyle and game dynamics.
It is crucial that the performance profiles can reflect the diverse playstyles.
We present a tool that can visualize player performance profiles in a timely manner.
arXiv Detail & Related papers (2023-03-17T01:13:18Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - Where Will Players Move Next? Dynamic Graphs and Hierarchical Fusion for
Movement Forecasting in Badminton [6.2405734957622245]
We focus on predicting what types of returning strokes will be made, and where players will move to based on previous strokes.
Existing sequence-based models neglect the effects of interactions between players, and graph-based models still suffer from multifaceted perspectives.
We propose a novel Dynamic Graphs and Hierarchical Fusion for Movement Forecasting model (DyMF) with interaction style extractors.
arXiv Detail & Related papers (2022-11-22T12:21:24Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - Temporally-Aware Feature Pooling for Action Spotting in Soccer
Broadcasts [86.56462654572813]
We focus our analysis on action spotting in soccer broadcast, which consists in temporally localizing the main actions in a soccer game.
We propose a novel feature pooling method based on NetVLAD, dubbed NetVLAD++, that embeds temporally-aware knowledge.
We train and evaluate our methodology on the recent large-scale dataset SoccerNet-v2, reaching 53.4% Average-mAP for action spotting.
arXiv Detail & Related papers (2021-04-14T11:09:03Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
We propose a Two-Stage Spatial-Temporal Network (TSSTN) that can provide accurate real-time win predictions.
Experiment results and applications in real-world live streaming scenarios showed that the proposed TSSTN model is effective both in prediction accuracy and interpretability.
arXiv Detail & Related papers (2020-08-14T12:00:58Z) - Hybrid Dynamic-static Context-aware Attention Network for Action
Assessment in Long Videos [96.45804577283563]
We present a novel hybrid dynAmic-static Context-aware attenTION NETwork (ACTION-NET) for action assessment in long videos.
We learn the video dynamic information but also focus on the static postures of the detected athletes in specific frames.
We combine the features of the two streams to regress the final video score, supervised by ground-truth scores given by experts.
arXiv Detail & Related papers (2020-08-13T15:51:42Z) - Scalable Psychological Momentum Forecasting in Esports [0.0]
We present ongoing work on an intelligent agent recommendation engine for competitive gaming.
We show that a learned representation of player psychological momentum, and of tilt, can be used to achieve state-of-the-art performance in pre- and post-draft win prediction.
arXiv Detail & Related papers (2020-01-30T11:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.