Investigation of a non-Hermitian edge burst with time-dependent
perturbation theory
- URL: http://arxiv.org/abs/2303.17219v2
- Date: Mon, 26 Feb 2024 16:20:00 GMT
- Title: Investigation of a non-Hermitian edge burst with time-dependent
perturbation theory
- Authors: Pengyu Wen, Jinghui Pi, Guilu Long
- Abstract summary: Edge burst is a phenomenon in non-Hermitian quantum dynamics.
We investigate the evolution of real-space wave functions for this lattice system.
- Score: 0.6617341769966992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge burst is a phenomenon in non-Hermitian quantum dynamics discovered by a
recent numerical study [W.-T. Xue, et al, Phys. Rev. Lett 2, 128.120401(2022)].
It finds that a large proportion of particle loss occurs at the system boundary
in a class of non-Hermitian quantum walk. In this paper, we investigate the
evolution of real-space wave functions for this lattice system. We find the
wave function of the edge site is distinct from the bulk sites. Using
time-dependent perturbation theory, we derive the analytical expression of the
real-space wave functions and find that the different evolution behaviors
between the edge and bulk sites are due to their different nearest-neighbor
site configurations. We also find the edge wave function primarily results from
the transition of the two nearest-neighbor non-decay sites. Besides, the
numerical diagonalization shows the edge wave function is mainly propagated by
a group of eigen-modes with a relatively large imaginary part. Our work
provides an analytical method for studying non-Hermitian quantum dynamical
problems.
Related papers
- The connection between Hilbert-space return probability and real-space
autocorrelations in quantum spin chains [0.0]
We show that the temporal decay of the autocorrelation in a disordered quantum spin chain is explicitly encoded in how the return probability on Hilbert space approaches its late-time saturation.
Our treatment is rooted in an understanding of the morphology of the time-evolving state on the Hilbert-space graph, and corroborated by exact numerical results.
arXiv Detail & Related papers (2023-05-10T18:00:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Interface dynamics in the two-dimensional quantum Ising model [0.0]
We show that the dynamics of interfaces, in the symmetry-broken phase of the two-dimensional ferromagnetic quantum Ising model, displays a robust form of ergodicity breaking.
We present a detailed analysis of the evolution of these interfaces both on the lattice and in a suitable continuum limit.
The implications of our work for the classic problem of the decay of a false vacuum are also discussed.
arXiv Detail & Related papers (2022-09-19T13:08:58Z) - Dynamics of a quantum wave emitted by a decaying and evanescent point
source [0.0]
We put forward a model that describes a decaying and evanescent point source of non-interacting quantum waves in 1D.
We show that there exists an optimal injection frequency and detection point for the observation of these two quantum phenomena.
arXiv Detail & Related papers (2022-08-30T11:44:18Z) - Structured matter wave evolution in external time-dependent fields [0.0]
We have analyzed the motion of a structured matter wave in the presence of a constant magnetic field and under the influence of a time-dependent external force.
From the point of view of the quantum interferometry of matter waves, and also non-relativistic quantum electron microscopy, the results obtained here are important and more reliable than the approximate methods.
arXiv Detail & Related papers (2022-05-09T18:12:56Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Unification of valley and anomalous Hall effects in a strained lattice [20.789927809771008]
We show that the hopping strengths between neighboring sites are designed by mimicking those between the Fock states in a three-mode Jaynes-Cummings model.
The eigenstates in the zeroth Landau level can be represented by the eigenstates of a large pseudo-spin.
Our study sheds light on connection between seemingly unrelated topological phases in condensed matter physics.
arXiv Detail & Related papers (2021-03-31T08:44:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.