Understanding the Robustness of 3D Object Detection with Bird's-Eye-View
Representations in Autonomous Driving
- URL: http://arxiv.org/abs/2303.17297v2
- Date: Sat, 16 Sep 2023 12:42:11 GMT
- Title: Understanding the Robustness of 3D Object Detection with Bird's-Eye-View
Representations in Autonomous Driving
- Authors: Zijian Zhu, Yichi Zhang, Hai Chen, Yinpeng Dong, Shu Zhao, Wenbo Ding,
Jiachen Zhong and Shibao Zheng
- Abstract summary: Bird's-Eye-View (BEV) representations have significantly improved the performance of 3D detectors with camera inputs on popular benchmarks.
We evaluate the natural and adversarial robustness of various representative models under extensive settings.
We propose a 3D consistent patch attack by applying adversarial patches in thetemporal 3D space to guarantee the consistency.
- Score: 31.98600806479808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is an essential perception task in autonomous driving to
understand the environments. The Bird's-Eye-View (BEV) representations have
significantly improved the performance of 3D detectors with camera inputs on
popular benchmarks. However, there still lacks a systematic understanding of
the robustness of these vision-dependent BEV models, which is closely related
to the safety of autonomous driving systems. In this paper, we evaluate the
natural and adversarial robustness of various representative models under
extensive settings, to fully understand their behaviors influenced by explicit
BEV features compared with those without BEV. In addition to the classic
settings, we propose a 3D consistent patch attack by applying adversarial
patches in the 3D space to guarantee the spatiotemporal consistency, which is
more realistic for the scenario of autonomous driving. With substantial
experiments, we draw several findings: 1) BEV models tend to be more stable
than previous methods under different natural conditions and common corruptions
due to the expressive spatial representations; 2) BEV models are more
vulnerable to adversarial noises, mainly caused by the redundant BEV features;
3) Camera-LiDAR fusion models have superior performance under different
settings with multi-modal inputs, but BEV fusion model is still vulnerable to
adversarial noises of both point cloud and image. These findings alert the
safety issue in the applications of BEV detectors and could facilitate the
development of more robust models.
Related papers
- Robust Bird's Eye View Segmentation by Adapting DINOv2 [3.236198583140341]
We adapt a vision foundational model, DINOv2, to BEV estimation using Low Rank Adaptation (LoRA)
Our experiments show increased robustness of BEV perception under various corruptions.
We also showcase the effectiveness of the adapted representations in terms of fewer learnable parameters and faster convergence during training.
arXiv Detail & Related papers (2024-09-16T12:23:35Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space.
Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored.
We design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features.
arXiv Detail & Related papers (2024-01-13T04:21:24Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - Towards Efficient 3D Object Detection in Bird's-Eye-View Space for Autonomous Driving: A Convolutional-Only Approach [13.513005108086006]
We propose an efficient BEV-based 3D detection framework called BEVENet.
BEVENet is 3$times$ faster than contemporary state-of-the-art (SOTA) approaches on the NuScenes challenge.
Our experiments show that BEVENet is 3$times$ faster than contemporary state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2023-12-01T14:52:59Z) - RoboBEV: Towards Robust Bird's Eye View Perception under Corruptions [34.111443808494506]
We introduce RoboBEV, a comprehensive benchmark suite that encompasses eight distinct corruptions, including Bright, Dark, Fog, Snow, Motion Blur, Color Quant, Camera Crash, and Frame Lost.
Based on it, we undertake extensive evaluations across a wide range of BEV-based models to understand their resilience and reliability.
Our findings provide valuable insights for designing future BEV models that can achieve both accuracy and robustness in real-world deployments.
arXiv Detail & Related papers (2023-04-13T17:59:46Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
We present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios.
We consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure.
We propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency.
arXiv Detail & Related papers (2023-03-30T17:59:17Z) - PersDet: Monocular 3D Detection in Perspective Bird's-Eye-View [26.264139933212892]
Bird's-Eye-View (BEV) is superior to other 3D detectors for autonomous driving and robotics.
transforming image features into BEV necessitates special operators to conduct feature sampling.
We propose detecting objects in perspective BEV -- a new BEV representation that does not require feature sampling.
arXiv Detail & Related papers (2022-08-19T15:19:20Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.