Learning distributed representations with efficient SoftMax normalization
- URL: http://arxiv.org/abs/2303.17475v4
- Date: Sun, 01 Jun 2025 14:02:31 GMT
- Title: Learning distributed representations with efficient SoftMax normalization
- Authors: Lorenzo Dall'Amico, Enrico Maria Belliardo,
- Abstract summary: We propose a linear-time approximation to compute the normalization constants of $rm SoftMax(XYT)$ for embedding vectors with bounded norms.<n>We show on some pre-trained embedding datasets that the proposed estimation method achieves higher or comparable accuracy with competing methods.<n>The proposed algorithm is interpretable and easily adapted to arbitrary embedding problems.
- Score: 3.8673630752805437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning distributed representations, or embeddings, that encode the relational similarity patterns among objects is a relevant task in machine learning. A popular method to learn the embedding matrices $X, Y$ is optimizing a loss function of the term ${\rm SoftMax}(XY^T)$. The complexity required to calculate this term, however, runs quadratically with the problem size, making it a computationally heavy solution. In this article, we propose a linear-time heuristic approximation to compute the normalization constants of ${\rm SoftMax}(XY^T)$ for embedding vectors with bounded norms. We show on some pre-trained embedding datasets that the proposed estimation method achieves higher or comparable accuracy with competing methods. From this result, we design an efficient and task-agnostic algorithm that learns the embeddings by optimizing the cross entropy between the softmax and a set of probability distributions given as inputs. The proposed algorithm is interpretable and easily adapted to arbitrary embedding problems. We consider a few use cases and observe similar or higher performances and a lower computational time than similar ``2Vec'' algorithms.
Related papers
- Pathwise optimization for bridge-type estimators and its applications [49.1574468325115]
Pathwise methods allow to efficiently compute the full path for penalized estimators.<n>We apply these algorithms to the penalized estimation of processes observed at discrete times.
arXiv Detail & Related papers (2024-12-05T10:38:29Z) - Approximating Metric Magnitude of Point Sets [4.522729058300309]
Metric magnitude is a measure of the "size" of point clouds with many desirable geometric properties.
It has been adapted to various mathematical contexts and recent work suggests that it can enhance machine learning and optimization algorithms.
In this paper, we study the magnitude problem, and show efficient ways of approximating it. We show that it can be cast as a convex optimization problem, but not as a submodular optimization.
The paper describes two new algorithms - an iterative approximation algorithm that converges fast and is accurate, and a subset selection method that makes the computation even faster.
arXiv Detail & Related papers (2024-09-06T17:15:28Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball.
We propose a new algorithmic framework, ProjUnit, for private mean estimation.
Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm.
arXiv Detail & Related papers (2023-06-07T14:07:35Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Kernel Packet: An Exact and Scalable Algorithm for Gaussian Process
Regression with Mat\'ern Correlations [23.560067934682294]
We develop an exact and scalable algorithm for one-dimensional Gaussian process regression with Mat'ern correlations.
The proposed algorithm is significantly superior to the existing alternatives in both the computational time and predictive accuracy.
arXiv Detail & Related papers (2022-03-07T03:30:35Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Algorithmic Solution for Systems of Linear Equations, in
$\mathcal{O}(mn)$ time [0.0]
We present a novel algorithm attaining excessively fast, the sought solution of linear systems of equations.
The execution time is very short compared with state-of-the-art methods.
The paper also comprises a theoretical proof for the algorithmic convergence.
arXiv Detail & Related papers (2021-04-26T13:40:31Z) - Grouped Variable Selection with Discrete Optimization: Computational and
Statistical Perspectives [9.593208961737572]
We present a new algorithmic framework for grouped variable selection that is based on discrete mathematical optimization.
Our methodology covers both high-dimensional linear regression and non- additive modeling with sparse programming.
Our exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can solve the associated mixed integer (MIP) problem to certified optimality.
arXiv Detail & Related papers (2021-04-14T19:21:59Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
We propose a general scheduling algorithm, which is derived from the optimum scheduling for small instances solved by a satisfiability checking(SAT) solver.
Strategies for further optimization on skipping redundant computations are put forward as well, with which reductions of almost 25% and 50% of the original computations are respectively achieved.
The proposed algorithms are applicable regardless of problem sizes, as long as the number of input vectors is divisible to the number of computing units available in the architecture.
arXiv Detail & Related papers (2020-12-02T12:04:16Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Estimating Multiple Precision Matrices with Cluster Fusion
Regularization [0.90238471756546]
We propose a penalized likelihood estimating multiple precision matrices from different classes.
Most existing methods either incorporate no information on relationships between the precision matrices, or require this information be a priori.
arXiv Detail & Related papers (2020-03-01T01:03:22Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
Mixed integer programming (MIP) can be used to solve (to optimality) $ell_0$-regularized regression problems.
We propose two classes of scalable algorithms: an exact algorithm that can handlepapprox 50,000$ features in a few minutes, and approximate algorithms that can address instances with $papprox6$.
In addition, we present new estimation error bounds for $ell$-regularizeds.
arXiv Detail & Related papers (2020-01-17T18:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.