A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization
- URL: http://arxiv.org/abs/2303.17992v2
- Date: Tue, 19 Mar 2024 22:10:18 GMT
- Title: A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization
- Authors: Mai-Quyen Pham, Jérémy Cohen, Thierry Chonavel,
- Abstract summary: We propose to improve the Multiplicative Updates algorithm by crafting a tighter upper bound of the Hessian matrix for each alternate subproblem.
Convergence is still ensured and we observe in practice on both synthetic and real world dataset that the proposed fastMU algorithm is often several orders of magnitude faster than the regular Multiplicative Updates algorithm.
- Score: 2.646309221150203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nonnegative Matrix Factorization is an important tool in unsupervised machine learning to decompose a data matrix into a product of parts that are often interpretable. Many algorithms have been proposed during the last three decades. A well-known method is the Multiplicative Updates algorithm proposed by Lee and Seung in 2002. Multiplicative updates have many interesting features: they are simple to implement and can be adapted to popular variants such as sparse Nonnegative Matrix Factorization, and, according to recent benchmarks, is state-of-the-art for many problems where the loss function is not the Frobenius norm. In this manuscript, we propose to improve the Multiplicative Updates algorithm seen as an alternating majorization minimization algorithm by crafting a tighter upper bound of the Hessian matrix for each alternate subproblem. Convergence is still ensured and we observe in practice on both synthetic and real world dataset that the proposed fastMU algorithm is often several orders of magnitude faster than the regular Multiplicative Updates algorithm, and can even be competitive with state-of-the-art methods for the Frobenius loss.
Related papers
- An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - Majorization-minimization for Sparse Nonnegative Matrix Factorization
with the $\beta$-divergence [2.3787352248749376]
It is well known that the norm of the other factor (the dictionary matrix) needs to be controlled in order to avoid an ill-posed formulation.
Standard practice consists in constraining the columns of the dictionary to have unit norm, which leads to a nontrivial optimization problem.
We derive block-descent majorization-minimization algorithms that result in simple multiplicative updates for either $ell_1$-regularization or the more "aggressive" log-regularization.
arXiv Detail & Related papers (2022-07-13T16:09:29Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Matrix Reordering for Noisy Disordered Matrices: Optimality and
Computationally Efficient Algorithms [9.245687221460654]
Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrixing based on a noisy monotone Toeplitz matrix model.
We establish fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares rate.
To address this, we propose a novel-time adaptive sorting algorithm with guaranteed performance improvement.
arXiv Detail & Related papers (2022-01-17T14:53:52Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
We propose a new non scalable low-rank regularizer called "nuclear Frobenius norm" regularizer, which is adaptive and sound.
It bypasses the computation of singular values and allows fast optimization by algorithms.
It obtains state-of-the-art recovery performance while being the fastest in existing matrix learning methods.
arXiv Detail & Related papers (2020-08-14T18:47:58Z) - DeepMP for Non-Negative Sparse Decomposition [14.790515227906257]
Non-negative signals form an important class of sparse signals.
greedy and convex relaxed algorithms are among the most popular methods.
One such modification has been proposed for Matching Pursuit (MP) based algorithms.
arXiv Detail & Related papers (2020-07-28T14:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.