Exploiting Multilingualism in Low-resource Neural Machine Translation
via Adversarial Learning
- URL: http://arxiv.org/abs/2303.18011v1
- Date: Fri, 31 Mar 2023 12:34:14 GMT
- Title: Exploiting Multilingualism in Low-resource Neural Machine Translation
via Adversarial Learning
- Authors: Amit Kumar, Ajay Pratap and Anil Kumar Singh
- Abstract summary: Generative Adversarial Networks (GAN) offer a promising approach for Neural Machine Translation (NMT)
In GAN, similar to bilingual models, multilingual NMT only considers one reference translation for each sentence during model training.
This article proposes Denoising Adversarial Auto-encoder-based Sentence Interpolation (DAASI) approach to perform sentence computation.
- Score: 3.2258463207097017
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative Adversarial Networks (GAN) offer a promising approach for Neural
Machine Translation (NMT). However, feeding multiple morphologically languages
into a single model during training reduces the NMT's performance. In GAN,
similar to bilingual models, multilingual NMT only considers one reference
translation for each sentence during model training. This single reference
translation limits the GAN model from learning sufficient information about the
source sentence representation. Thus, in this article, we propose Denoising
Adversarial Auto-encoder-based Sentence Interpolation (DAASI) approach to
perform sentence interpolation by learning the intermediate latent
representation of the source and target sentences of multilingual language
pairs. Apart from latent representation, we also use the Wasserstein-GAN
approach for the multilingual NMT model by incorporating the model generated
sentences of multiple languages for reward computation. This computed reward
optimizes the performance of the GAN-based multilingual model in an effective
manner. We demonstrate the experiments on low-resource language pairs and find
that our approach outperforms the existing state-of-the-art approaches for
multilingual NMT with a performance gain of up to 4 BLEU points. Moreover, we
use our trained model on zero-shot language pairs under an unsupervised
scenario and show the robustness of the proposed approach.
Related papers
- Low-resource neural machine translation with morphological modeling [3.3721926640077804]
Morphological modeling in neural machine translation (NMT) is a promising approach to achieving open-vocabulary machine translation.
We propose a framework-solution for modeling complex morphology in low-resource settings.
We evaluate our proposed solution on Kinyarwanda - English translation using public-domain parallel text.
arXiv Detail & Related papers (2024-04-03T01:31:41Z) - Multilingual Neural Machine Translation:Can Linguistic Hierarchies Help? [29.01386302441015]
Multilingual Neural Machine Translation (MNMT) trains a single NMT model that supports translation between multiple languages.
The performance of an MNMT model is highly dependent on the type of languages used in training, as transferring knowledge from a diverse set of languages degrades the translation performance due to negative transfer.
We propose a Hierarchical Knowledge Distillation (HKD) approach for MNMT which capitalises on language groups generated according to typological features and phylogeny of languages to overcome the issue of negative transfer.
arXiv Detail & Related papers (2021-10-15T02:31:48Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
Cross-lingual pretraining requires models to align the lexical- and high-level representations of the two languages.
Previous research has shown that this is because the representations are not sufficiently aligned.
In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings.
arXiv Detail & Related papers (2021-03-18T21:17:58Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
We propose a multi-task learning framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data.
We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages.
arXiv Detail & Related papers (2020-10-06T06:54:12Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.