GVP: Generative Volumetric Primitives
- URL: http://arxiv.org/abs/2303.18193v1
- Date: Fri, 31 Mar 2023 16:50:23 GMT
- Title: GVP: Generative Volumetric Primitives
- Authors: Mallikarjun B R, Xingang Pan, Mohamed Elgharib, Christian Theobalt
- Abstract summary: We present Generative Volumetric Primitives (GVP), the first pure 3D generative model that can sample and render 512-resolution images in real-time.
GVP jointly models a number of primitives and their spatial information, both of which can be efficiently generated via a 2D convolutional network.
Experiments on several datasets demonstrate superior efficiency and 3D consistency of GVP over the state-of-the-art.
- Score: 76.95231302205235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in 3D-aware generative models have pushed the boundary of image
synthesis with explicit camera control. To achieve high-resolution image
synthesis, several attempts have been made to design efficient generators, such
as hybrid architectures with both 3D and 2D components. However, such a design
compromises multiview consistency, and the design of a pure 3D generator with
high resolution is still an open problem. In this work, we present Generative
Volumetric Primitives (GVP), the first pure 3D generative model that can sample
and render 512-resolution images in real-time. GVP jointly models a number of
volumetric primitives and their spatial information, both of which can be
efficiently generated via a 2D convolutional network. The mixture of these
primitives naturally captures the sparsity and correspondence in the 3D volume.
The training of such a generator with a high degree of freedom is made possible
through a knowledge distillation technique. Experiments on several datasets
demonstrate superior efficiency and 3D consistency of GVP over the
state-of-the-art.
Related papers
- Hybrid Fourier Score Distillation for Efficient One Image to 3D Object Generation [42.83810819513537]
Single image-to-3D generation is pivotal for crafting controllable 3D assets.
We propose a 2D-3D hybrid Fourier Score Distillation objective function, hy-FSD.
hy-FSD can be integrated into existing 3D generation methods and produce significant performance gains.
arXiv Detail & Related papers (2024-05-31T08:11:25Z) - Controllable Text-to-3D Generation via Surface-Aligned Gaussian Splatting [9.383423119196408]
We introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing multi-view diffusion models.
MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation.
In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations.
arXiv Detail & Related papers (2024-03-15T02:57:20Z) - IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality
3D Generation [96.32684334038278]
In this paper, we explore the design space of text-to-3D models.
We significantly improve multi-view generation by considering video instead of image generators.
Our new method, IM-3D, reduces the number of evaluations of the 2D generator network 10-100x.
arXiv Detail & Related papers (2024-02-13T18:59:51Z) - HoloFusion: Towards Photo-realistic 3D Generative Modeling [77.03830223281787]
Diffusion-based image generators can now produce high-quality and diverse samples, but their success has yet to fully translate to 3D generation.
We present HoloFusion, a method that combines the best of these approaches to produce high-fidelity, plausible, and diverse 3D samples.
arXiv Detail & Related papers (2023-08-28T01:19:33Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - GRAM-HD: 3D-Consistent Image Generation at High Resolution with
Generative Radiance Manifolds [28.660893916203747]
This paper proposes a novel 3D-aware GAN that can generate high resolution images (up to 1024X1024) while keeping strict 3D consistency as in volume rendering.
Our motivation is to achieve super-resolution directly in the 3D space to preserve 3D consistency.
Experiments on FFHQ and AFHQv2 datasets show that our method can produce high-quality 3D-consistent results.
arXiv Detail & Related papers (2022-06-15T02:35:51Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent.
In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.
We introduce an expressive hybrid explicit-implicit network architecture that synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
arXiv Detail & Related papers (2021-12-15T08:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.