Infinite-dimensional reservoir computing
- URL: http://arxiv.org/abs/2304.00490v1
- Date: Sun, 2 Apr 2023 08:59:12 GMT
- Title: Infinite-dimensional reservoir computing
- Authors: Lukas Gonon, Lyudmila Grigoryeva, Juan-Pablo Ortega
- Abstract summary: Reservoir computing approximation and generalization bounds are proved for a new concept class of input/output systems.
The results in the paper yield a fully implementable recurrent neural network-based learning algorithm with provable convergence guarantees.
- Score: 9.152759278163954
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reservoir computing approximation and generalization bounds are proved for a
new concept class of input/output systems that extends the so-called
generalized Barron functionals to a dynamic context. This new class is
characterized by the readouts with a certain integral representation built on
infinite-dimensional state-space systems. It is shown that this class is very
rich and possesses useful features and universal approximation properties. The
reservoir architectures used for the approximation and estimation of elements
in the new class are randomly generated echo state networks with either linear
or ReLU activation functions. Their readouts are built using randomly generated
neural networks in which only the output layer is trained (extreme learning
machines or random feature neural networks). The results in the paper yield a
fully implementable recurrent neural network-based learning algorithm with
provable convergence guarantees that do not suffer from the curse of
dimensionality.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Reservoir Computing with Generalized Readout based on Generalized Synchronization [0.0]
Reservoir computing is a machine learning framework that exploits nonlinear dynamics.
We propose a novel reservoir computing framework with generalized readout, including a nonlinear combination of reservoir variables.
In a numerical study, we find that introducing the generalized readout leads to a significant improvement in accuracy and an unexpected enhancement in robustness.
arXiv Detail & Related papers (2024-05-03T10:03:59Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
We show that 2 hidden layers are necessary and sufficient to represent any function representable in the class.
We also give precise bounds on the sizes of the neural networks required to represent any function in the class.
We propose a new class of neural networks that we call shortcut linear threshold networks.
arXiv Detail & Related papers (2021-11-15T22:33:52Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Optimal Approximation with Sparse Neural Networks and Applications [0.0]
We use deep sparsely connected neural networks to measure the complexity of a function class in $L(mathbb Rd)$.
We also introduce representation system - a countable collection of functions to guide neural networks.
We then analyse the complexity of a class called $beta$ cartoon-like functions using rate-distortion theory and wedgelets construction.
arXiv Detail & Related papers (2021-08-14T05:14:13Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Deep Archimedean Copulas [98.96141706464425]
ACNet is a novel differentiable neural network architecture that enforces structural properties.
We show that ACNet is able to both approximate common Archimedean Copulas and generate new copulas which may provide better fits to data.
arXiv Detail & Related papers (2020-12-05T22:58:37Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z) - Online Sequential Extreme Learning Machines: Features Combined From
Hundreds of Midlayers [0.0]
In this paper, we develop an algorithm called hierarchal online sequential learning algorithm (H-OS-ELM)
The algorithm can learn chunk by chunk with fixed or varying block size.
arXiv Detail & Related papers (2020-06-12T00:50:04Z) - Non-Euclidean Universal Approximation [4.18804572788063]
Modifications to a neural network's input and output layers are often required to accommodate the specificities of most practical learning tasks.
We present general conditions describing feature and readout maps that preserve an architecture's ability to approximate any continuous functions uniformly on compacts.
arXiv Detail & Related papers (2020-06-03T15:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.