DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
- URL: http://arxiv.org/abs/2304.00571v3
- Date: Fri, 04 Apr 2025 15:53:08 GMT
- Title: DropMAE: Learning Representations via Masked Autoencoders with Spatial-Attention Dropout for Temporal Matching Tasks
- Authors: Qiangqiang Wu, Tianyu Yang, Ziquan Liu, Wei Lin, Baoyuan Wu, Antoni B. Chan,
- Abstract summary: This paper studies masked autoencoder (MAE) video pre-training for various temporal matching-based downstream tasks.<n>We propose DropMAE, which adaptively performs spatial-attention dropout in the frame reconstruction to facilitate temporal correspondence learning in videos.
- Score: 77.84636815364905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies masked autoencoder (MAE) video pre-training for various temporal matching-based downstream tasks, i.e., object-level tracking tasks including video object tracking (VOT) and video object segmentation (VOS), self-supervised visual correspondence learning, dense tracking tasks including optical flow estimation and long-term point tracking, and 3D point cloud tracking. Specifically, our work explores to provide a general representation to boost the temporal matching ability in various downstream tracking tasks. To achieve this, we firstly find that a simple extension of MAE, which randomly masks out frame patches in videos and reconstruct the frame pixels, heavily relies on spatial cues while ignoring temporal relations for frame reconstruction, thus leading to sub-optimal temporal matching representations. To alleviate this, we propose DropMAE, which adaptively performs spatial-attention dropout in the frame reconstruction to facilitate temporal correspondence learning in videos. We obtain several important findings with DropMAE: 1) DropMAE is a strong and efficient temporal matching learner, which achieves better fine-tuning results on matching-based tasks than the ImageNet-based MAE with 2x faster pre-training speed. 2) DropMAE is effective for different tracking tasks, i.e., object-level matching tasks including VOT and VOS, dense tracking tasks including optical flow estimation and tracking any point (TAP), and even 3D tracking in the different modality of point cloud data. Since none exists, we build ViT-based trackers for different downstream tracking tasks, and our pre-trained DropMAE model can be directly loaded in these ViT-based trackers for fine-tuning without further modifications. Experiments on 6 downstream tracking tasks demonstrate the effectiveness of DropMAE as a general pre-trained representation for diverse tracking tasks.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Efficient Image Pre-Training with Siamese Cropped Masked Autoencoders [89.12558126877532]
We propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE.
Our method exclusively considers pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video.
CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches.
arXiv Detail & Related papers (2024-03-26T16:04:19Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Multi-entity Video Transformers for Fine-Grained Video Representation
Learning [36.31020249963468]
We re-examine the design of transformer architectures for video representation learning.
A salient aspect of our self-supervised method is the improved integration of spatial information in the temporal pipeline.
Our Multi-entity Video Transformer (MV-Former) architecture achieves state-of-the-art results on multiple fine-grained video benchmarks.
arXiv Detail & Related papers (2023-11-17T21:23:12Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - Concatenated Masked Autoencoders as Spatial-Temporal Learner [6.475592804311682]
We introduce the Concatenated Masked Autoencoders (CatMAE) as a spatial-temporal learner for self-supervised video representation learning.
We propose a new data augmentation strategy, Video-Reverse (ViRe), which uses reversed video frames as the model's reconstruction targets.
arXiv Detail & Related papers (2023-11-02T03:08:26Z) - Motion-to-Matching: A Mixed Paradigm for 3D Single Object Tracking [27.805298263103495]
We propose MTM-Tracker, which combines motion modeling with feature matching into a single network.
In the first stage, we exploit the continuous historical boxes as motion prior and propose an encoder-decoder structure to locate target coarsely.
In the second stage, we introduce a feature interaction module to extract motion-aware features from consecutive point clouds and match them to refine target movement.
arXiv Detail & Related papers (2023-08-23T02:40:51Z) - Unmasked Teacher: Towards Training-Efficient Video Foundation Models [50.19560876891811]
Video Foundation Models (VFMs) have received limited exploration due to high computational costs and data scarcity.
This paper proposes a training-efficient method for temporal-sensitive VFMs that integrates the benefits of existing methods.
Our model can handle various tasks including scene-related, temporal-related, and complex video-language understanding.
arXiv Detail & Related papers (2023-03-28T15:39:28Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
Given an untrimmed video, temporal sentence grounding aims to locate a target moment semantically according to a sentence query.
Previous respectable works have made decent success, but they only focus on high-level visual features extracted from decoded frames.
We propose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input.
arXiv Detail & Related papers (2023-03-14T12:53:27Z) - Unifying Tracking and Image-Video Object Detection [54.91658924277527]
TrIVD (Tracking and Image-Video Detection) is the first framework that unifies image OD, video OD, and MOT within one end-to-end model.
To handle the discrepancies and semantic overlaps of category labels, TrIVD formulates detection/tracking as grounding and reasons about object categories.
arXiv Detail & Related papers (2022-11-20T20:30:28Z) - Self-supervised Video Representation Learning with Motion-Aware Masked
Autoencoders [46.38458873424361]
Masked autoencoders (MAEs) have emerged recently as art self-supervised representation learners.
In this work we present a motion-aware variant -- MotionMAE.
Our model is designed to additionally predict the corresponding motion structure information over time.
arXiv Detail & Related papers (2022-10-09T03:22:15Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - VIOLET : End-to-End Video-Language Transformers with Masked Visual-token
Modeling [88.30109041658618]
A great challenge in video-language (VidL) modeling lies in the disconnection between fixed video representations extracted from image/video understanding models and downstream VidL data.
We present VIOLET, a fully end-to-end VIdeO-LanguagE Transformer, which adopts a video transformer to explicitly model the temporal dynamics of video inputs.
arXiv Detail & Related papers (2021-11-24T18:31:20Z) - Attention-guided Temporal Coherent Video Object Matting [78.82835351423383]
We propose a novel deep learning-based object matting method that can achieve temporally coherent matting results.
Its key component is an attention-based temporal aggregation module that maximizes image matting networks' strength.
We show how to effectively solve the trimap generation problem by fine-tuning a state-of-the-art video object segmentation network.
arXiv Detail & Related papers (2021-05-24T17:34:57Z) - Discriminative Appearance Modeling with Multi-track Pooling for
Real-time Multi-object Tracking [20.66906781151]
In multi-object tracking, the tracker maintains in its memory the appearance and motion information for each object in the scene.
Many approaches model each target in isolation and lack the ability to use all the targets in the scene to jointly update the memory.
We propose a training strategy adapted to multi-track pooling which generates hard tracking episodes online.
arXiv Detail & Related papers (2021-01-28T18:12:39Z) - TRAT: Tracking by Attention Using Spatio-Temporal Features [14.520067060603209]
We propose a two-stream deep neural network tracker that uses both spatial and temporal features.
Our architecture is developed over ATOM tracker and contains two backbones: (i) 2D-CNN network to capture appearance features and (ii) 3D-CNN network to capture motion features.
arXiv Detail & Related papers (2020-11-18T20:11:12Z) - Unsupervised Multiple Person Tracking using AutoEncoder-Based Lifted
Multicuts [11.72025865314187]
We present an unsupervised multiple object tracking approach based on minimum visual features and lifted multicuts.
We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking.
arXiv Detail & Related papers (2020-02-04T09:42:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.