Uniqueness of Landau levels and their analogs with higher Chern numbers
- URL: http://arxiv.org/abs/2304.00866v2
- Date: Tue, 3 Sep 2024 14:33:31 GMT
- Title: Uniqueness of Landau levels and their analogs with higher Chern numbers
- Authors: Bruno Mera, Tomoki Ozawa,
- Abstract summary: Landau levels are the eigenstates of a charged particle in two dimensions under a magnetic field.
We prove that the only energy eigenstates having holomorphic wave functions with a flat geometry are the Landau levels.
- Score: 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Landau levels are the eigenstates of a charged particle in two dimensions under a magnetic field, and are at the heart of the integer and fractional quantum Hall effects, which are two prototypical phenomena showing topological features. Following recent discoveries of fractional quantum Hall phases in van der Waals materials, there is a rapid progress in understanding of the precise condition under which the fractional quantum Hall phases can be stabilized. It is now understood that the key to obtaining the fractional quantum Hall phases is the energy band whose eigenstates are holomorphic functions in both real and momentum space coordinates. Landau levels are indeed examples of such energy bands with an additional special property of having flat geometrical features. In this paper, we prove that, in fact, the only energy eigenstates having holomorphic wave functions with a flat geometry are the Landau levels and their higher Chern number analogs. Since it has been known that any holomorphic eigenstates can be constructed from the ones with a flat geometry such as the Landau levels, our uniqueness proof of the Landau levels allows one to construct any possible holomorphic eigenstate with which the fractional quantum Hall phases can be stabilized.
Related papers
- Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Quantum Hall effect and Landau levels without spatial long-range
correlations [0.0]
We show that the notion of Landau levels and the quantum Hall effect can be generalized to 2d non-crystalline lattices without spatial long-range order.
The existence of these bands imply that non-crystalline systems in magnetic fields can support the hallmark quantum effects which have been typically associated with crystalline solids.
arXiv Detail & Related papers (2023-01-20T13:53:24Z) - Fate of density waves in the presence of a higher order van Hove
singularity [0.0]
Topological transitions in electronic band structures can affect various types of orderings in quantum materials.
We study the fate of a spin-density wave phase formed by nested parts of the Fermi surface, when a HOVHS appears in parallel.
We find that the phase formation can be boosted by the presence of a singularity, with the critical temperature increasing by orders of magnitude.
arXiv Detail & Related papers (2022-05-18T09:50:24Z) - Partons as unique ground states of quantum Hall parent Hamiltonians: The
case of Fibonacci anyons [9.987055028382876]
We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states are parton-like.
We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels.
We establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states.
arXiv Detail & Related papers (2022-04-20T18:00:00Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Geometrical Rabi oscillations and Landau-Zener transitions in
non-Abelian systems [0.0]
We propose universal protocols to determine quantum geometric properties in non-Abelian systems.
Our schemes suggest a way to prepare eigenstates of the quantum metric.
arXiv Detail & Related papers (2021-05-06T14:09:52Z) - Unification of valley and anomalous Hall effects in a strained lattice [20.789927809771008]
We show that the hopping strengths between neighboring sites are designed by mimicking those between the Fock states in a three-mode Jaynes-Cummings model.
The eigenstates in the zeroth Landau level can be represented by the eigenstates of a large pseudo-spin.
Our study sheds light on connection between seemingly unrelated topological phases in condensed matter physics.
arXiv Detail & Related papers (2021-03-31T08:44:30Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.