ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis
- URL: http://arxiv.org/abs/2304.01053v1
- Date: Mon, 3 Apr 2023 15:00:06 GMT
- Title: ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis
- Authors: Xuan Xu, Saarthak Kapse, Rajarsi Gupta, Prateek Prasanna
- Abstract summary: We present ViT-DAE, which integrates vision transformers (ViT) and diffusion autoencoders for high-quality histopathology image synthesis.
Our approach outperforms recent GAN-based and vanilla DAE methods in generating realistic images.
- Score: 4.724009208755395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI has received substantial attention in recent years due to its
ability to synthesize data that closely resembles the original data source.
While Generative Adversarial Networks (GANs) have provided innovative
approaches for histopathological image analysis, they suffer from limitations
such as mode collapse and overfitting in discriminator. Recently, Denoising
Diffusion models have demonstrated promising results in computer vision. These
models exhibit superior stability during training, better distribution
coverage, and produce high-quality diverse images. Additionally, they display a
high degree of resilience to noise and perturbations, making them well-suited
for use in digital pathology, where images commonly contain artifacts and
exhibit significant variations in staining. In this paper, we present a novel
approach, namely ViT-DAE, which integrates vision transformers (ViT) and
diffusion autoencoders for high-quality histopathology image synthesis. This
marks the first time that ViT has been introduced to diffusion autoencoders in
computational pathology, allowing the model to better capture the complex and
intricate details of histopathology images. We demonstrate the effectiveness of
ViT-DAE on three publicly available datasets. Our approach outperforms recent
GAN-based and vanilla DAE methods in generating realistic images.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACE model explore the diversity of histological images available with ST data to extract molecular insights from tissue image.
Model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation.
arXiv Detail & Related papers (2024-08-07T07:12:52Z) - An Organism Starts with a Single Pix-Cell: A Neural Cellular Diffusion for High-Resolution Image Synthesis [8.01395073111961]
We introduce a novel family of models termed Generative Cellular Automata (GeCA)
GeCAs are evaluated as an effective augmentation tool for retinal disease classification across two imaging modalities: Fundus and Optical Coherence Tomography ( OCT)
In the context of OCT imaging, where data is scarce and the distribution of classes is inherently skewed, GeCA significantly boosts the performance of 11 different ophthalmological conditions.
arXiv Detail & Related papers (2024-07-03T11:26:09Z) - Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models [0.0]
This research introduces a novel architecture that is able to generate multiple, related PET-CT-tumour mask pairs using paired networks and conditional encoders.
Our approach includes innovative, time step-controlled mechanisms and a noise-seeding' strategy to improve DDPM sampling consistency.
arXiv Detail & Related papers (2024-03-26T14:21:49Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images [0.08192907805418582]
This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Conversaal GAN and Auxiliary GAN to alleviate the mode collapse problems.
Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images.
arXiv Detail & Related papers (2023-09-21T16:43:29Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
Vision transformers (ViT) have demonstrated impressive performance across various machine vision problems.
We systematically study this question via an extensive set of experiments and comparisons with a high-performing convolutional neural network (CNN)
We show effective features of ViTs are due to flexible receptive and dynamic fields possible via the self-attention mechanism.
arXiv Detail & Related papers (2021-05-21T17:59:18Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.