Conformal Prediction Regions for Time Series using Linear
Complementarity Programming
- URL: http://arxiv.org/abs/2304.01075v5
- Date: Mon, 8 Jan 2024 21:50:23 GMT
- Title: Conformal Prediction Regions for Time Series using Linear
Complementarity Programming
- Authors: Matthew Cleaveland, Insup Lee, George J. Pappas, Lars Lindemann
- Abstract summary: We propose an optimization-based method for reducing conservatism to enable long horizon planning and verification.
We show that this problem can be cast as a mixed integer linear complementarity program (MILCP), which we then relax into a linear complementarity program (LCP)
- Score: 25.094249285804224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction is a statistical tool for producing prediction regions
of machine learning models that are valid with high probability. However,
applying conformal prediction to time series data leads to conservative
prediction regions. In fact, to obtain prediction regions over $T$ time steps
with confidence $1-\delta$, {previous works require that each individual
prediction region is valid} with confidence $1-\delta/T$. We propose an
optimization-based method for reducing this conservatism to enable long horizon
planning and verification when using learning-enabled time series predictors.
Instead of considering prediction errors individually at each time step, we
consider a parameterized prediction error over multiple time steps. By
optimizing the parameters over an additional dataset, we find prediction
regions that are not conservative. We show that this problem can be cast as a
mixed integer linear complementarity program (MILCP), which we then relax into
a linear complementarity program (LCP). Additionally, we prove that the relaxed
LP has the same optimal cost as the original MILCP. Finally, we demonstrate the
efficacy of our method on case studies using pedestrian trajectory predictors
and F16 fighter jet altitude predictors.
Related papers
- Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
We present a family of methods to calibrate prediction intervals for regression problems with local coverage guarantees.
We create a partition by training regression trees and Random Forests on conformity scores.
Our proposal is versatile, as it applies to various conformity scores and prediction settings.
arXiv Detail & Related papers (2024-02-12T01:17:09Z) - Multi-Modal Conformal Prediction Regions with Simple Structures by Optimizing Convex Shape Templates [19.504348671777006]
Conformal prediction is a statistical tool for producing prediction regions for machine learning models that are valid with high probability.
A key component of conformal prediction algorithms is a emphnon-conformity score function that quantifies how different a model's prediction is from the unknown ground truth value.
We propose a method that optimize parameterized emphshape template functions over calibration data, which results in non-conformity score functions that produce prediction regions with minimum volume.
arXiv Detail & Related papers (2023-12-12T17:00:13Z) - PAC Prediction Sets Under Label Shift [52.30074177997787]
Prediction sets capture uncertainty by predicting sets of labels rather than individual labels.
We propose a novel algorithm for constructing prediction sets with PAC guarantees in the label shift setting.
We evaluate our approach on five datasets.
arXiv Detail & Related papers (2023-10-19T17:57:57Z) - UTOPIA: Universally Trainable Optimal Prediction Intervals Aggregation [9.387706860375461]
We introduce a novel strategy called Universally Trainable Optimal Predictive Intervals Aggregation (UTOPIA)
This technique excels in efficiently aggregating multiple prediction intervals while maintaining a small average width of the prediction band and ensuring coverage.
It is validated through its application to synthetic data and two real-world datasets in finance and macroeconomics.
arXiv Detail & Related papers (2023-06-28T20:38:37Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.