FineRecon: Depth-aware Feed-forward Network for Detailed 3D
Reconstruction
- URL: http://arxiv.org/abs/2304.01480v2
- Date: Fri, 18 Aug 2023 22:35:08 GMT
- Title: FineRecon: Depth-aware Feed-forward Network for Detailed 3D
Reconstruction
- Authors: Noah Stier, Anurag Ranjan, Alex Colburn, Yajie Yan, Liang Yang,
Fangchang Ma, Baptiste Angles
- Abstract summary: Recent works on 3D reconstruction from posed images have demonstrated that direct inference of scene-level 3D geometry is feasible using deep neural networks.
We propose three effective solutions for improving the fidelity of inference-based 3D reconstructions.
Our method, FineRecon, produces smooth and highly accurate reconstructions, showing significant improvements across multiple depth and 3D reconstruction metrics.
- Score: 13.157400338544177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works on 3D reconstruction from posed images have demonstrated that
direct inference of scene-level 3D geometry without test-time optimization is
feasible using deep neural networks, showing remarkable promise and high
efficiency. However, the reconstructed geometry, typically represented as a 3D
truncated signed distance function (TSDF), is often coarse without fine
geometric details. To address this problem, we propose three effective
solutions for improving the fidelity of inference-based 3D reconstructions. We
first present a resolution-agnostic TSDF supervision strategy to provide the
network with a more accurate learning signal during training, avoiding the
pitfalls of TSDF interpolation seen in previous work. We then introduce a depth
guidance strategy using multi-view depth estimates to enhance the scene
representation and recover more accurate surfaces. Finally, we develop a novel
architecture for the final layers of the network, conditioning the output TSDF
prediction on high-resolution image features in addition to coarse voxel
features, enabling sharper reconstruction of fine details. Our method,
FineRecon, produces smooth and highly accurate reconstructions, showing
significant improvements across multiple depth and 3D reconstruction metrics.
Related papers
- GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D
Reconstruction of Complex Scenes with Reflections [92.38975002642455]
We propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections.
Our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces.
arXiv Detail & Related papers (2023-12-20T18:59:42Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - CVRecon: Rethinking 3D Geometric Feature Learning For Neural
Reconstruction [12.53249207602695]
We propose an end-to-end 3D neural reconstruction framework CVRecon.
We exploit the rich geometric embedding in the cost volumes to facilitate 3D geometric feature learning.
arXiv Detail & Related papers (2023-04-28T05:30:19Z) - Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception
from Monocular Video [2.2299983745857896]
We present a novel real-time capable learning method that jointly perceives a 3D scene's geometry structure and semantic labels.
We propose an end-to-end cross-dimensional refinement neural network (CDRNet) to extract both 3D mesh and 3D semantic labeling in real time.
arXiv Detail & Related papers (2023-03-16T11:53:29Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - VolumeFusion: Deep Depth Fusion for 3D Scene Reconstruction [71.83308989022635]
In this paper, we advocate that replicating the traditional two stages framework with deep neural networks improves both the interpretability and the accuracy of the results.
Our network operates in two steps: 1) the local computation of the local depth maps with a deep MVS technique, and, 2) the depth maps and images' features fusion to build a single TSDF volume.
In order to improve the matching performance between images acquired from very different viewpoints, we introduce a rotation-invariant 3D convolution kernel called PosedConv.
arXiv Detail & Related papers (2021-08-19T11:33:58Z) - 3D Shapes Local Geometry Codes Learning with SDF [8.37542758486152]
A signed distance function (SDF) as the 3D shape description is one of the most effective approaches to represent 3D geometry for rendering and reconstruction.
In this paper, we consider the degeneration problem of reconstruction coming from the capacity decrease of the DeepSDF model.
We propose Local Geometry Code Learning (LGCL), a model that improves the original DeepSDF results by learning from a local shape geometry.
arXiv Detail & Related papers (2021-08-19T09:56:03Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.