Arrhythmia Classifier Based on Ultra-Lightweight Binary Neural Network
- URL: http://arxiv.org/abs/2304.01568v2
- Date: Fri, 25 Aug 2023 16:10:53 GMT
- Title: Arrhythmia Classifier Based on Ultra-Lightweight Binary Neural Network
- Authors: Ninghao Pu, Zhongxing Wu, Ao Wang, Hanshi Sun, Zijin Liu and Hao Liu
- Abstract summary: We propose an ultra-lightweight binary neural network that is capable of 5-class and 17-class arrhythmia classification based on ECG signals.
Our model achieves optimal accuracy in 17-class classification and boasts a elegantly simple network architecture.
Our research showcases the potential of lightweight deep learning models in the healthcare industry.
- Score: 4.8083529516303924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasonably and effectively monitoring arrhythmias through ECG signals has
significant implications for human health. With the development of deep
learning, numerous ECG classification algorithms based on deep learning have
emerged. However, most existing algorithms trade off high accuracy for complex
models, resulting in high storage usage and power consumption. This also
inevitably increases the difficulty of implementation on wearable Artificial
Intelligence-of-Things (AIoT) devices with limited resources. In this study, we
proposed a universally applicable ultra-lightweight binary neural network(BNN)
that is capable of 5-class and 17-class arrhythmia classification based on ECG
signals. Our BNN achieves 96.90% (full precision 97.09%) and 97.50% (full
precision 98.00%) accuracy for 5-class and 17-class classification,
respectively, with state-of-the-art storage usage (3.76 KB and 4.45 KB).
Compared to other binarization works, our approach excels in supporting two
multi-classification modes while achieving the smallest known storage space.
Moreover, our model achieves optimal accuracy in 17-class classification and
boasts an elegantly simple network architecture. The algorithm we use is
optimized specifically for hardware implementation. Our research showcases the
potential of lightweight deep learning models in the healthcare industry,
specifically in wearable medical devices, which hold great promise for
improving patient outcomes and quality of life. Code is available on:
https://github.com/xpww/ECG_BNN_Net
Related papers
- Arrhythmia Classifier using Binarized Convolutional Neural Network for
Resource-Constrained Devices [4.36031697142651]
Binarized convolutional neural network suitable for ECG monitoring is proposed.
It is hardware-friendly and more suitable for use in resource-constrained wearable devices.
It achieves 12.65 times the computing speedup, 24.8 times the storage compression ratio, and only requires a quarter of the memory overhead.
arXiv Detail & Related papers (2022-05-07T14:21:32Z) - Arrhythmia Classifier Using Convolutional Neural Network with Adaptive
Loss-aware Multi-bit Networks Quantization [4.8538839251819486]
We present a 1-D adaptive loss-aware quantization, achieving a high compression rate that reduces memory consumption by 23.36 times.
We propose a 17 layer end-to-end neural network classifier to classify 17 different rhythm classes trained on the MIT-BIH dataset.
Our study achieves a 1-D convolutional neural network with high performance and low resources consumption, which is hardware-friendly and illustrates the possibility of deployment on wearable devices.
arXiv Detail & Related papers (2022-02-27T14:26:41Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Optimization of Residual Convolutional Neural Network for
Electrocardiogram Classification [0.9281671380673306]
We propose to optimize the Recurrent one Dimensional Convolutional Neural Network model (R-1D-CNN) with two levels.
At the first level, a residual convolutional layer and one-dimensional convolutional neural layers are trained to learn patient-specific ECG features.
The second level is automatic and based on proposed algorithm based BO.
arXiv Detail & Related papers (2021-12-11T16:52:23Z) - Real-Time Patient-Specific ECG Classification by 1D Self-Operational
Neural Networks [24.226952040270564]
We propose 1D Self-organized Operational Neural Networks (1D Self-ONNs) for ECG classification.
1D Self-ONNs have the utmost advantage and superiority over conventional ONNs where the prior operator search within the operator set library is entirely avoided.
Our results over the MIT-BIH arrhythmia benchmark database demonstrate that 1D Self-ONNs can surpass 1D CNNs with a significant margin.
arXiv Detail & Related papers (2021-09-30T19:37:36Z) - Neural network relief: a pruning algorithm based on neural activity [47.57448823030151]
We propose a simple importance-score metric that deactivates unimportant connections.
We achieve comparable performance for LeNet architectures on MNIST.
The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations.
arXiv Detail & Related papers (2021-09-22T15:33:49Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Designing ECG Monitoring Healthcare System with Federated Transfer
Learning and Explainable AI [4.694126527114577]
We design a new explainable artificial intelligence (XAI) based deep learning framework in a federated setting for ECG-based healthcare applications.
The proposed framework was trained and tested using the MIT-BIH Arrhythmia database.
arXiv Detail & Related papers (2021-05-26T11:59:44Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
equivariant neural networks have gained increased interest in the deep learning community.
They have been successfully applied in the medical domain where symmetries in the data can be effectively exploited to build more accurate and robust models.
Mobile, on-device implementations of deep learning solutions have been developed for medical applications.
However, equivariant models are commonly implemented using large and computationally expensive architectures, not suitable to run on mobile devices.
In this work, we design and test an equivariant version of MobileNetV2 and further optimize it with model quantization to enable more efficient inference.
arXiv Detail & Related papers (2020-04-21T00:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.