A Survey on Vertical Federated Learning: From a Layered Perspective
- URL: http://arxiv.org/abs/2304.01829v1
- Date: Tue, 4 Apr 2023 14:33:30 GMT
- Title: A Survey on Vertical Federated Learning: From a Layered Perspective
- Authors: Liu Yang, Di Chai, Junxue Zhang, Yilun Jin, Leye Wang, Hao Liu, Han
Tian, Qian Xu, Kai Chen
- Abstract summary: In this paper, we investigate the current work of vertical federated learning (VFL) from a layered perspective.
We design a novel MOSP tree taxonomy to analyze the core component of VFL, i.e., secure vertical federated machine learning algorithm.
Our taxonomy considers four dimensions, i.e., machine learning model (M), protection object (O), security model (S), and privacy-preserving protocol (P)
- Score: 21.639062199459925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertical federated learning (VFL) is a promising category of federated
learning for the scenario where data is vertically partitioned and distributed
among parties. VFL enriches the description of samples using features from
different parties to improve model capacity. Compared with horizontal federated
learning, in most cases, VFL is applied in the commercial cooperation scenario
of companies. Therefore, VFL contains tremendous business values. In the past
few years, VFL has attracted more and more attention in both academia and
industry. In this paper, we systematically investigate the current work of VFL
from a layered perspective. From the hardware layer to the vertical federated
system layer, researchers contribute to various aspects of VFL. Moreover, the
application of VFL has covered a wide range of areas, e.g., finance,
healthcare, etc. At each layer, we categorize the existing work and explore the
challenges for the convenience of further research and development of VFL.
Especially, we design a novel MOSP tree taxonomy to analyze the core component
of VFL, i.e., secure vertical federated machine learning algorithm. Our
taxonomy considers four dimensions, i.e., machine learning model (M),
protection object (O), security model (S), and privacy-preserving protocol (P),
and provides a comprehensive investigation.
Related papers
- Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning (VFL) is a privacy-preserving distributed learning paradigm.
Recent research has shown promising results addressing various challenges in VFL.
This survey offers a systematic overview of recent developments.
arXiv Detail & Related papers (2024-05-25T16:05:06Z) - VFLAIR: A Research Library and Benchmark for Vertical Federated Learning [14.878602173713686]
Vertical Learning (VFL) has emerged as a collaborative training paradigm that allows participants with different features of the same group of users to accomplish cooperative training without exposing their raw data or model parameters.
VFL has gained significant attention for its research potential and real-world applications in recent years, but still faces substantial challenges, such as in defending various kinds of data inference and backdoor attacks.
We present an Federated and lightweight VFL framework VFLAIR, which supports VFL training with a variety of models, datasets and protocols, along with standardized modules for comprehensive evaluations of attacks and defense strategies.
arXiv Detail & Related papers (2023-10-15T13:18:31Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
Heterogeneous Federated Learning (HFL) is much more challenging and corresponding solutions are diverse and complex.
New advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed.
Several critical and promising future research directions in HFL are discussed.
arXiv Detail & Related papers (2023-07-20T06:32:14Z) - Vertical Federated Learning: Taxonomies, Threats, and Prospects [22.487434998185773]
Federated learning (FL) is the most popular distributed machine learning technique.
FL can be divided into horizontal federated learning (HFL) and vertical federated learning (VFL)
VFL is more relevant than HFL as different companies hold different features for the same set of customers.
Although VFL is an emerging area of research, it is not well-established compared to HFL.
arXiv Detail & Related papers (2023-02-03T05:13:40Z) - Vertical Federated Learning: Concepts, Advances and Challenges [18.38260017835129]
We review the concept and algorithms of Vertical Federated Learning (VFL)
We provide an exhaustive categorization for VFL settings and privacy-preserving protocols.
We propose a unified framework, termed VFLow, which considers the VFL problem under communication, computation, privacy, as well as effectiveness and fairness constraints.
arXiv Detail & Related papers (2022-11-23T10:00:06Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
Semi-VFL (Vertical Semi-Federated Learning) is proposed to achieve a practical industry application fashion for VFL.
We build an inference-efficient single-party student model applicable to the whole sample space.
New representation distillation methods are designed to extract cross-party feature correlations for both the overlapped and non-overlapped data.
arXiv Detail & Related papers (2022-09-30T17:59:27Z) - Low-Latency Cooperative Spectrum Sensing via Truncated Vertical
Federated Learning [51.51440623636274]
We propose a vertical federated learning (VFL) framework to exploit the distributed features across multiple secondary users (SUs) without compromising data privacy.
To accelerate the training process, we propose a truncated vertical federated learning (T-VFL) algorithm.
The convergence performance of T-VFL is provided via mathematical analysis and justified by simulation results.
arXiv Detail & Related papers (2022-08-07T10:39:27Z) - BlindFL: Vertical Federated Machine Learning without Peeking into Your
Data [20.048695060411774]
Vertical federated learning (VFL) describes a case where ML models are built upon the private data of different participated parties.
We introduce BlindFL, a novel framework for VFL training and inference.
We show that BlindFL supports diverse datasets and models efficiently whilst achieving robust privacy guarantees.
arXiv Detail & Related papers (2022-06-16T07:26:50Z) - Desirable Companion for Vertical Federated Learning: New Zeroth-Order
Gradient Based Algorithm [140.25480610981504]
A complete list of metrics to evaluate VFL algorithms should include model applicability, privacy, communication, and computation efficiency.
We propose a novel VFL framework with black-box scalability, which is inseparably inseparably scalable.
arXiv Detail & Related papers (2022-03-19T13:55:47Z) - Vertical Federated Learning: Challenges, Methodologies and Experiments [34.4865409422585]
vertical learning (VFL) is capable of constructing a hyper ML model by embracing sub-models from different clients.
In this paper, we discuss key challenges in VFL with effective solutions, and conduct experiments on real-life datasets.
arXiv Detail & Related papers (2022-02-09T06:56:41Z) - FedML: A Research Library and Benchmark for Federated Machine Learning [55.09054608875831]
Federated learning (FL) is a rapidly growing research field in machine learning.
Existing FL libraries cannot adequately support diverse algorithmic development.
We introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison.
arXiv Detail & Related papers (2020-07-27T13:02:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.