Deep Learning for Automated Experimentation in Scanning Transmission
Electron Microscopy
- URL: http://arxiv.org/abs/2304.02048v1
- Date: Tue, 4 Apr 2023 18:01:56 GMT
- Title: Deep Learning for Automated Experimentation in Scanning Transmission
Electron Microscopy
- Authors: Sergei V. Kalinin, Debangshu Mukherjee, Kevin M. Roccapriore, Ben
Blaiszik, Ayana Ghosh, Maxim A. Ziatdinov, A. Al-Najjar, Christina Doty,
Sarah Akers, Nageswara S. Rao, Joshua C. Agar, Steven R. Spurgeon
- Abstract summary: Machine learning (ML) has become critical for post-acquisition data analysis in () transmission electron microscopy,scanning (S)TEM, imaging and spectroscopy.
We discuss the associated challenges with the transition to active ML, including sequential data analysis and out-of-distribution drift effects.
These considerations will collectively inform the operationalization of ML in next-generation experimentation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning (ML) has become critical for post-acquisition data analysis
in (scanning) transmission electron microscopy, (S)TEM, imaging and
spectroscopy. An emerging trend is the transition to real-time analysis and
closed-loop microscope operation. The effective use of ML in electron
microscopy now requires the development of strategies for microscopy-centered
experiment workflow design and optimization. Here, we discuss the associated
challenges with the transition to active ML, including sequential data analysis
and out-of-distribution drift effects, the requirements for the edge operation,
local and cloud data storage, and theory in the loop operations. Specifically,
we discuss the relative contributions of human scientists and ML agents in the
ideation, orchestration, and execution of experimental workflows and the need
to develop universal hyper languages that can apply across multiple platforms.
These considerations will collectively inform the operationalization of ML in
next-generation experimentation.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms.
The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities.
These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations.
arXiv Detail & Related papers (2023-11-21T21:51:00Z) - Human-in-the-loop: The future of Machine Learning in Automated Electron
Microscopy [0.6760163180787716]
We discuss some considerations in designing ML-based active experiments.
The likely strategy for the next several years will be human-in-the-loop automated experiments.
arXiv Detail & Related papers (2023-10-08T05:26:32Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Leveraging generative adversarial networks to create realistic scanning
transmission electron microscopy images [2.5954872177280346]
Machine learning could revolutionize materials research through autonomous data collection and processing.
We employ a cycle generative adversarial network (CycleGAN) with a reciprocal space discriminator to augment simulated data with realistic spatial frequency information.
We showcase our approach by training a fully convolutional network (FCN) to identify single atom defects in a 4.5 million atom data set.
arXiv Detail & Related papers (2023-01-18T19:19:27Z) - Microscopy is All You Need [0.0]
We argue that a promising pathway for the development of machine learning methods is via the route of domain-specific deployable algorithms.
This will benefit both fundamental physical studies and serve as a test bed for more complex autonomous systems such as robotics and manufacturing.
arXiv Detail & Related papers (2022-10-12T18:41:40Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Towards Augmented Microscopy with Reinforcement Learning-Enhanced
Workflows [0.0]
We develop a virtual environment to test and develop a network to autonomously align the electron beam without prior knowledge.
We deploy a successful model on the microscope to validate the approach and demonstrate the value of designing appropriate virtual environments.
Overall, the results highlight that by taking advantage of RL, microscope operations can be automated without the need for extensive algorithm design.
arXiv Detail & Related papers (2022-08-04T20:02:21Z) - Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
Processes to Hypothesis Learning [0.0]
We discuss the basic principles of Bayesian active learning and illustrate its applications for scanning probe microscopes (SPMs)
These frameworks allow for the use of prior data, the discovery of specific functionalities as encoded in spectral data, and exploration of physical laws manifesting during the experiment.
arXiv Detail & Related papers (2022-05-30T23:01:41Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Global Voxel Transformer Networks for Augmented Microscopy [54.730707387866076]
We introduce global voxel transformer networks (GVTNets), an advanced deep learning tool for augmented microscopy.
GVTNets are built on global voxel transformer operators (GVTOs), which are able to aggregate global information.
We apply the proposed methods on existing datasets for three different augmented microscopy tasks under various settings.
arXiv Detail & Related papers (2020-08-05T20:11:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.