EigenFold: Generative Protein Structure Prediction with Diffusion Models
- URL: http://arxiv.org/abs/2304.02198v1
- Date: Wed, 5 Apr 2023 02:46:13 GMT
- Title: EigenFold: Generative Protein Structure Prediction with Diffusion Models
- Authors: Bowen Jing, Ezra Erives, Peter Pao-Huang, Gabriele Corso, Bonnie
Berger, Tommi Jaakkola
- Abstract summary: EigenFold is a diffusion generative modeling framework for sampling a distribution of structures from a given protein sequence.
On recent CAMEO targets, EigenFold achieves a median TMScore of 0.84, while providing a more comprehensive picture of model uncertainty.
- Score: 10.24107243529341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protein structure prediction has reached revolutionary levels of accuracy on
single structures, yet distributional modeling paradigms are needed to capture
the conformational ensembles and flexibility that underlie biological function.
Towards this goal, we develop EigenFold, a diffusion generative modeling
framework for sampling a distribution of structures from a given protein
sequence. We define a diffusion process that models the structure as a system
of harmonic oscillators and which naturally induces a cascading-resolution
generative process along the eigenmodes of the system. On recent CAMEO targets,
EigenFold achieves a median TMScore of 0.84, while providing a more
comprehensive picture of model uncertainty via the ensemble of sampled
structures relative to existing methods. We then assess EigenFold's ability to
model and predict conformational heterogeneity for fold-switching proteins and
ligand-induced conformational change. Code is available at
https://github.com/bjing2016/EigenFold.
Related papers
- Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
We introduce DPLM-2, a multimodal protein foundation model that extends discrete diffusion protein language model (DPLM) to accommodate both sequences and structures.
DPLM-2 learns the joint distribution of sequence and structure, as well as their marginals and conditionals.
Empirical evaluation shows that DPLM-2 can simultaneously generate highly compatible amino acid sequences and their corresponding 3D structures.
arXiv Detail & Related papers (2024-10-17T17:20:24Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - AlphaFold Meets Flow Matching for Generating Protein Ensembles [11.1639408863378]
We develop a flow-based generative modeling approach for learning and sampling the conformational landscapes of proteins.
Our method provides a superior combination of precision and diversity compared to AlphaFold with MSA subsampling.
Our method can diversify a static PDB structure with faster wall-clock convergence to certain equilibrium properties than replicate MD trajectories.
arXiv Detail & Related papers (2024-02-07T13:44:47Z) - Ophiuchus: Scalable Modeling of Protein Structures through Hierarchical
Coarse-graining SO(3)-Equivariant Autoencoders [1.8835495377767553]
Three-dimensional native states of natural proteins display recurring and hierarchical patterns.
Traditional graph-based modeling of protein structures is often limited to operate within a single fine-grained resolution.
We introduce Ophiuchus, an SO(3)-equivariant coarse-graining model that efficiently operates on all-atom protein structures.
arXiv Detail & Related papers (2023-10-04T01:01:11Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Latent Space Diffusion Models of Cryo-EM Structures [6.968705314671148]
We train a diffusion model as an expressive, learnable prior in the cryoDRGN framework.
By learning an accurate model of the data distribution, our method unlocks tools in generative modeling, sampling, and distribution analysis.
arXiv Detail & Related papers (2022-11-25T15:17:10Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
An important task in bioengineering is designing proteins with specific 3D structures and chemical properties which enable targeted functions.
We introduce a generative model of both protein structure and sequence that can operate at significantly larger scales than previous molecular generative modeling approaches.
arXiv Detail & Related papers (2022-05-26T16:10:09Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.