PIKS: A Technique to Identify Actionable Trends for Policy-Makers
Through Open Healthcare Data
- URL: http://arxiv.org/abs/2304.02208v1
- Date: Wed, 5 Apr 2023 03:45:39 GMT
- Title: PIKS: A Technique to Identify Actionable Trends for Policy-Makers
Through Open Healthcare Data
- Authors: A. Ravishankar Rao, Subrata Garai, Soumyabrata Dey, Hang Peng
- Abstract summary: Key concerns in public health include the quick identification and analysis of trends, and the detection of outliers.
We present an efficient outlier detection technique, termed PIKS, which combines an iterative k-means algorithm with a pruned searchlight based scan.
We identify outliers in conditions including suicide rates, immunity disorders, social admissions, cardiomyopathies, and pregnancy in the third trimester.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With calls for increasing transparency, governments are releasing greater
amounts of data in multiple domains including finance, education and
healthcare. The efficient exploratory analysis of healthcare data constitutes a
significant challenge. Key concerns in public health include the quick
identification and analysis of trends, and the detection of outliers. This
allows policies to be rapidly adapted to changing circumstances. We present an
efficient outlier detection technique, termed PIKS (Pruned iterative-k means
searchlight), which combines an iterative k-means algorithm with a pruned
searchlight based scan. We apply this technique to identify outliers in two
publicly available healthcare datasets from the New York Statewide Planning and
Research Cooperative System, and California's Office of Statewide Health
Planning and Development. We provide a comparison of our technique with three
other existing outlier detection techniques, consisting of auto-encoders,
isolation forests and feature bagging. We identified outliers in conditions
including suicide rates, immunity disorders, social admissions,
cardiomyopathies, and pregnancy in the third trimester. We demonstrate that the
PIKS technique produces results consistent with other techniques such as the
auto-encoder. However, the auto-encoder needs to be trained, which requires
several parameters to be tuned. In comparison, the PIKS technique has far fewer
parameters to tune. This makes it advantageous for fast, "out-of-the-box" data
exploration. The PIKS technique is scalable and can readily ingest new
datasets. Hence, it can provide valuable, up-to-date insights to citizens,
patients and policy-makers. We have made our code open source, and with the
availability of open data, other researchers can easily reproduce and extend
our work. This will help promote a deeper understanding of healthcare policies
and public health issues.
Related papers
- Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Balancing Privacy and Progress in Artificial Intelligence: Anonymization
in Histopathology for Biomedical Research and Education [1.8078387709049526]
Transferring medical data "as open as possible" poses a risk to patient privacy.
Existing regulations push towards keeping medical data "as closed as necessary" to avoid re-identification risks.
This paper explores the legal regulations and terminologies for medical data-sharing.
arXiv Detail & Related papers (2023-07-18T16:53:07Z) - A system for exploring big data: an iterative k-means searchlight for
outlier detection on open health data [0.4588028371034407]
We present a system that explores multiple combinations of variables using a searchlight technique and identifies outliers.
We illustrate this system by anaylzing open health care data released by New York State.
Several anomalous trends in the data are identified, including cost overruns at specific hospitals, and increases in diagnoses such as suicides.
arXiv Detail & Related papers (2023-04-05T02:09:15Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
We provide a background of data augmentation, a novel and comprehensive taxonomy of reviewed data augmentation techniques, and the strengths and weaknesses (wherever possible) of each technique.
We also provide comprehensive results of the data augmentation effect on three popular computer vision tasks, such as image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2023-01-07T11:37:32Z) - Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey [6.277848092408045]
Data quality is the key factor for the development of trustworthy AI in healthcare.
Access to good quality datasets is limited by the technical difficulty of data acquisition.
Large-scale sharing of healthcare data is hindered by strict ethical restrictions.
arXiv Detail & Related papers (2022-09-17T13:34:17Z) - Impact of the composition of feature extraction and class sampling in
medicare fraud detection [3.6016022712620095]
The Centers for Medicaid and Medicare Services released "Medicare Part D" insurance claims is utilized in this study to develop fraud detection system.
To detect fraud efficiently, this study applies autoencoder as a feature extraction technique, synthetic minority oversampling technique (SMOTE) as a data sampling technique, and various gradient boosted decision tree-based classifiers as a classification algorithm.
arXiv Detail & Related papers (2022-06-03T06:57:08Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
We propose a novel self-supervised learning (FedMed) for brain image synthesis.
An affine transform loss (ATL) was formulated to make use of severely distorted images without violating privacy legislation.
The proposed method demonstrates advanced performance in both the quality of synthesized results under a severely misaligned and unpaired data setting.
arXiv Detail & Related papers (2022-01-29T13:45:39Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
Anomaly detection becomes increasingly important for the dependability and serviceability of IT services.
Existing unsupervised methods need anomaly examples to obtain a suitable decision boundary.
We develop A2Log, which is an unsupervised anomaly detection method consisting of two steps: Anomaly scoring and anomaly decision.
arXiv Detail & Related papers (2021-09-20T13:40:21Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Privacy-preserving Artificial Intelligence Techniques in Biomedicine [3.908261721108553]
Training an AI model on sensitive data raises concerns about the privacy of individual participants.
This paper provides a structured overview of advances in privacy-preserving AI techniques in biomedicine.
It places the most important state-of-the-art approaches within a unified taxonomy and discusses their strengths, limitations, and open problems.
arXiv Detail & Related papers (2020-07-22T18:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.