PWESuite: Phonetic Word Embeddings and Tasks They Facilitate
- URL: http://arxiv.org/abs/2304.02541v4
- Date: Tue, 26 Mar 2024 10:13:06 GMT
- Title: PWESuite: Phonetic Word Embeddings and Tasks They Facilitate
- Authors: Vilém Zouhar, Kalvin Chang, Chenxuan Cui, Nathaniel Carlson, Nathaniel Robinson, Mrinmaya Sachan, David Mortensen,
- Abstract summary: We develop three methods that use articulatory features to build phonetically informed word embeddings.
We also contribute a task suite to fairly evaluate past, current, and future methods.
- Score: 37.09948594297879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
Related papers
- An Evaluation of Sindhi Word Embedding in Semantic Analogies and Downstream Tasks [2.3624125155742064]
We propose a new word embedding based corpus consisting of more than 61 million words crawled from multiple web resources.
We design a preprocessing pipeline for the filtration of unwanted text from crawled data.
The cleaned vocabulary is fed to state-of-the-art continuous-bag-of-words, skip-gram, and GloVe word embedding algorithms.
arXiv Detail & Related papers (2024-08-28T11:36:29Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
A text entails a hypothesis if and only if the true value of the hypothesis follows the text.
In this paper, we propose a novel approach to identifying the textual entailment relationship between text and hypothesis.
We employ an element-wise Manhattan distance vector-based feature that can identify the semantic entailment relationship between the text-hypothesis pair.
arXiv Detail & Related papers (2022-10-18T10:03:51Z) - Spell my name: keyword boosted speech recognition [25.931897154065663]
uncommon words such as names and technical terminology are important to understanding conversations in context.
We propose a simple but powerful ASR decoding method that can better recognise these uncommon keywords.
The method boosts the probabilities of given keywords in a beam search based on acoustic model predictions.
We demonstrate the effectiveness of our method on the LibriSpeeech test sets and also internal data of real-world conversations.
arXiv Detail & Related papers (2021-10-06T14:16:57Z) - UCPhrase: Unsupervised Context-aware Quality Phrase Tagging [63.86606855524567]
UCPhrase is a novel unsupervised context-aware quality phrase tagger.
We induce high-quality phrase spans as silver labels from consistently co-occurring word sequences.
We show that our design is superior to state-of-the-art pre-trained, unsupervised, and distantly supervised methods.
arXiv Detail & Related papers (2021-05-28T19:44:24Z) - Enhanced word embeddings using multi-semantic representation through
lexical chains [1.8199326045904998]
We propose two novel algorithms, called Flexible Lexical Chain II and Fixed Lexical Chain II.
These algorithms combine the semantic relations derived from lexical chains, prior knowledge from lexical databases, and the robustness of the distributional hypothesis in word embeddings as building blocks forming a single system.
Our results show the integration between lexical chains and word embeddings representations sustain state-of-the-art results, even against more complex systems.
arXiv Detail & Related papers (2021-01-22T09:43:33Z) - STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation
Learning [2.28438857884398]
We present a novel multi-modal deep neural network architecture that uses speech and text entanglement for learning spoken-word representations.
STEPs-RL is trained in a supervised manner to predict the phonetic sequence of a target spoken-word.
Latent representations produced by our model were able to predict the target phonetic sequences with an accuracy of 89.47%.
arXiv Detail & Related papers (2020-11-23T13:29:16Z) - Interactive Re-Fitting as a Technique for Improving Word Embeddings [0.0]
We make it possible for humans to adjust portions of a word embedding space by moving sets of words closer to one another.
Our approach allows users to trigger selective post-processing as they interact with and assess potential bias in word embeddings.
arXiv Detail & Related papers (2020-09-30T21:54:22Z) - Seeing wake words: Audio-visual Keyword Spotting [103.12655603634337]
KWS-Net is a novel convolutional architecture that uses a similarity map intermediate representation to separate the task into sequence matching and pattern detection.
We show that our method generalises to other languages, specifically French and German, and achieves a comparable performance to English with less language specific data.
arXiv Detail & Related papers (2020-09-02T17:57:38Z) - On Vocabulary Reliance in Scene Text Recognition [79.21737876442253]
Methods perform well on images with words within vocabulary but generalize poorly to images with words outside vocabulary.
We call this phenomenon "vocabulary reliance"
We propose a simple yet effective mutual learning strategy to allow models of two families to learn collaboratively.
arXiv Detail & Related papers (2020-05-08T11:16:58Z) - Techniques for Vocabulary Expansion in Hybrid Speech Recognition Systems [54.49880724137688]
The problem of out of vocabulary words (OOV) is typical for any speech recognition system.
One of the popular approach to cover OOVs is to use subword units rather then words.
In this paper we explore different existing methods of this solution on both graph construction and search method levels.
arXiv Detail & Related papers (2020-03-19T21:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.