HomPINNs: homotopy physics-informed neural networks for solving the
inverse problems of nonlinear differential equations with multiple solutions
- URL: http://arxiv.org/abs/2304.02811v2
- Date: Wed, 17 Jan 2024 18:14:20 GMT
- Title: HomPINNs: homotopy physics-informed neural networks for solving the
inverse problems of nonlinear differential equations with multiple solutions
- Authors: Haoyang Zheng, Yao Huang, Ziyang Huang, Wenrui Hao, Guang Lin
- Abstract summary: We propose homotopy physics-informed neural networks (HomPINNs) to solve inverse problems of nonlinear differential equations (DEs)
The proposed framework begins with the use of NNs to simultaneously approximate unlabeled observations across diverse solutions while adhering to DE constraints.
Our findings demonstrate that the proposed method is scalable and adaptable, providing an effective solution for solving DEs with multiple solutions and unknown parameters.
- Score: 6.89453634946458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the complex behavior arising from non-uniqueness, symmetry, and
bifurcations in the solution space, solving inverse problems of nonlinear
differential equations (DEs) with multiple solutions is a challenging task. To
address this, we propose homotopy physics-informed neural networks (HomPINNs),
a novel framework that leverages homotopy continuation and neural networks
(NNs) to solve inverse problems. The proposed framework begins with the use of
NNs to simultaneously approximate unlabeled observations across diverse
solutions while adhering to DE constraints. Through homotopy continuation, the
proposed method solves the inverse problem by tracing the observations and
identifying multiple solutions. The experiments involve testing the performance
of the proposed method on one-dimensional DEs and applying it to solve a
two-dimensional Gray-Scott simulation. Our findings demonstrate that the
proposed method is scalable and adaptable, providing an effective solution for
solving DEs with multiple solutions and unknown parameters. Moreover, it has
significant potential for various applications in scientific computing, such as
modeling complex systems and solving inverse problems in physics, chemistry,
biology, etc.
Related papers
- Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
Singularly perturbed problems have solutions with steep boundary layers that are hard to resolve numerically.
Traditional numerical methods, such as Finite Difference Methods, require a refined mesh to obtain stable and accurate solutions.
We consider the use of Physics-Informed Neural Networks (PINNs) to produce numerical solutions of singularly perturbed problems.
arXiv Detail & Related papers (2024-09-12T00:24:21Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering.
We discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges.
arXiv Detail & Related papers (2024-05-31T14:24:39Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
We propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity.
We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and show on a few test problems that the approach results in better solutions and significant computational savings.
arXiv Detail & Related papers (2023-05-23T19:12:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.