Synthetic Sample Selection for Generalized Zero-Shot Learning
- URL: http://arxiv.org/abs/2304.02846v1
- Date: Thu, 6 Apr 2023 03:22:43 GMT
- Title: Synthetic Sample Selection for Generalized Zero-Shot Learning
- Authors: Shreyank N Gowda
- Abstract summary: Generalized Zero-Shot Learning (GZSL) has emerged as a pivotal research domain in computer vision.
This paper proposes a novel approach for synthetic feature selection using reinforcement learning.
- Score: 4.264192013842096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized Zero-Shot Learning (GZSL) has emerged as a pivotal research
domain in computer vision, owing to its capability to recognize objects that
have not been seen during training. Despite the significant progress achieved
by generative techniques in converting traditional GZSL to fully supervised
learning, they tend to generate a large number of synthetic features that are
often redundant, thereby increasing training time and decreasing accuracy. To
address this issue, this paper proposes a novel approach for synthetic feature
selection using reinforcement learning. In particular, we propose a
transformer-based selector that is trained through proximal policy optimization
(PPO) to select synthetic features based on the validation classification
accuracy of the seen classes, which serves as a reward. The proposed method is
model-agnostic and data-agnostic, making it applicable to both images and
videos and versatile for diverse applications. Our experimental results
demonstrate the superiority of our approach over existing feature-generating
methods, yielding improved overall performance on multiple benchmarks.
Related papers
- LC-Protonets: Multi-label Few-shot learning for world music audio tagging [65.72891334156706]
We introduce Label-Combination Prototypical Networks (LC-Protonets) to address the problem of multi-label few-shot classification.
LC-Protonets generate one prototype per label combination, derived from the power set of labels present in the limited training items.
Our method is applied to automatic audio tagging across diverse music datasets, covering various cultures and including both modern and traditional music.
arXiv Detail & Related papers (2024-09-17T15:13:07Z) - Dynamic Policy-Driven Adaptive Multi-Instance Learning for Whole Slide
Image Classification [26.896926631411652]
Multi-Instance Learning (MIL) has shown impressive performance for histopathology whole slide image (WSI) analysis using bags or pseudo-bags.
Existing MIL-based technologies at least suffer from one or more of the following problems: 1) requiring high storage and intensive pre-processing for numerous instances (sampling); 2) potential over-fitting with limited knowledge to predict bag labels (feature representation); 3) pseudo-bag counts and prior biases affect model robustness and generalizability (decision-making)
arXiv Detail & Related papers (2024-03-09T04:43:24Z) - SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized
Zero-Shot Learning [0.7420433640907689]
Generalized Zero-Shot Learning (GZSL) recognizes unseen classes by transferring knowledge from the seen classes.
This paper introduces a dual strategy to address the generalization gap.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis [0.0]
We propose DoE2Vec, a variational autoencoder (VAE)-based methodology to learn optimization landscape characteristics.
Unlike the classical exploratory landscape analysis (ELA) method, our approach does not require any feature engineering.
For validation, we inspect the quality of latent reconstructions and analyze the latent representations using different experiments.
arXiv Detail & Related papers (2023-03-31T09:38:44Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
We propose learning an additional screening mechanism to identify discriminative clues commonly seen across instances and classes.
We show that a common rationale detector can be learned by simply exploiting the GradCAM induced from the SSL objective.
arXiv Detail & Related papers (2023-03-03T02:07:40Z) - ProFormer: Learning Data-efficient Representations of Body Movement with
Prototype-based Feature Augmentation and Visual Transformers [31.908276711898548]
Methods for data-efficient recognition from body poses increasingly leverage skeleton sequences structured as image-like arrays.
We look at this paradigm from the perspective of transformer networks, for the first time exploring visual transformers as data-efficient encoders of skeleton movement.
In our pipeline, body pose sequences cast as image-like representations are converted into patch embeddings and then passed to a visual transformer backbone optimized with deep metric learning.
arXiv Detail & Related papers (2022-02-23T11:11:54Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.