Natural Language Robot Programming: NLP integrated with autonomous
robotic grasping
- URL: http://arxiv.org/abs/2304.02993v1
- Date: Thu, 6 Apr 2023 11:06:30 GMT
- Title: Natural Language Robot Programming: NLP integrated with autonomous
robotic grasping
- Authors: Muhammad Arshad Khan, Max Kenney, Jack Painter, Disha Kamale, Riza
Batista-Navarro, Amir Ghalamzan-E
- Abstract summary: We present a grammar-based natural language framework for robot programming, specifically for pick-and-place tasks.
Our approach uses a custom dictionary of action words, designed to store together words that share meaning.
We validate our framework through simulation and real-world experimentation, using a Franka Panda robotic arm.
- Score: 1.7045152415056037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a grammar-based natural language framework for
robot programming, specifically for pick-and-place tasks. Our approach uses a
custom dictionary of action words, designed to store together words that share
meaning, allowing for easy expansion of the vocabulary by adding more action
words from a lexical database. We validate our Natural Language Robot
Programming (NLRP) framework through simulation and real-world experimentation,
using a Franka Panda robotic arm equipped with a calibrated camera-in-hand and
a microphone. Participants were asked to complete a pick-and-place task using
verbal commands, which were converted into text using Google's Speech-to-Text
API and processed through the NLRP framework to obtain joint space trajectories
for the robot. Our results indicate that our approach has a high system
usability score. The framework's dictionary can be easily extended without
relying on transfer learning or large data sets. In the future, we plan to
compare the presented framework with different approaches of human-assisted
pick-and-place tasks via a comprehensive user study.
Related papers
- Context-Aware Command Understanding for Tabletop Scenarios [1.7082212774297747]
This paper presents a novel hybrid algorithm designed to interpret natural human commands in tabletop scenarios.
By integrating multiple sources of information, including speech, gestures, and scene context, the system extracts actionable instructions for a robot.
We discuss the strengths and limitations of the system, with particular focus on how it handles multimodal command interpretation.
arXiv Detail & Related papers (2024-10-08T20:46:39Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
Vision Language Models (VLMs) can process state information as visual-textual prompts and respond with policy decisions in text.
We propose LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as conversations.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
We introduce Data-driven Instruction Augmentation for Language-conditioned control (DIAL)
We utilize semi-language labels leveraging the semantic understanding of CLIP to propagate knowledge onto large datasets of unlabelled demonstration data.
DIAL enables imitation learning policies to acquire new capabilities and generalize to 60 novel instructions unseen in the original dataset.
arXiv Detail & Related papers (2022-11-21T18:56:00Z) - Enhancing Interpretability and Interactivity in Robot Manipulation: A
Neurosymbolic Approach [0.0]
We present a neurosymbolic architecture for coupling language-guided visual reasoning with robot manipulation.
A non-expert human user can prompt the robot using unconstrained natural language, providing a referring expression (REF), a question (VQA) or a grasp action instruction.
We generate a 3D vision-and-language synthetic dataset of tabletop scenes in a simulation environment to train our approach and perform extensive evaluations in both synthetic and real-world scenes.
arXiv Detail & Related papers (2022-10-03T12:21:45Z) - What Matters in Language Conditioned Robotic Imitation Learning [26.92329260907805]
We study the most critical challenges in learning language conditioned policies from offline free-form imitation datasets.
We present a novel approach that significantly outperforms the state of the art on the challenging language conditioned long-horizon robot manipulation CALVIN benchmark.
arXiv Detail & Related papers (2022-04-13T08:45:32Z) - Reshaping Robot Trajectories Using Natural Language Commands: A Study of
Multi-Modal Data Alignment Using Transformers [33.7939079214046]
We provide a flexible language-based interface for human-robot collaboration.
We take advantage of recent advancements in the field of large language models to encode the user command.
We train the model using imitation learning over a dataset containing robot trajectories modified by language commands.
arXiv Detail & Related papers (2022-03-25T01:36:56Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.