CrowdCLIP: Unsupervised Crowd Counting via Vision-Language Model
- URL: http://arxiv.org/abs/2304.04231v1
- Date: Sun, 9 Apr 2023 12:56:54 GMT
- Title: CrowdCLIP: Unsupervised Crowd Counting via Vision-Language Model
- Authors: Dingkang Liang, Jiahao Xie, Zhikang Zou, Xiaoqing Ye, Wei Xu, Xiang
Bai
- Abstract summary: Supervised crowd counting relies heavily on costly manual labeling.
We propose a novel unsupervised framework for crowd counting, named CrowdCLIP.
CrowdCLIP achieves superior performance compared to previous unsupervised state-of-the-art counting methods.
- Score: 60.30099369475092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised crowd counting relies heavily on costly manual labeling, which is
difficult and expensive, especially in dense scenes. To alleviate the problem,
we propose a novel unsupervised framework for crowd counting, named CrowdCLIP.
The core idea is built on two observations: 1) the recent contrastive
pre-trained vision-language model (CLIP) has presented impressive performance
on various downstream tasks; 2) there is a natural mapping between crowd
patches and count text. To the best of our knowledge, CrowdCLIP is the first to
investigate the vision language knowledge to solve the counting problem.
Specifically, in the training stage, we exploit the multi-modal ranking loss by
constructing ranking text prompts to match the size-sorted crowd patches to
guide the image encoder learning. In the testing stage, to deal with the
diversity of image patches, we propose a simple yet effective progressive
filtering strategy to first select the highly potential crowd patches and then
map them into the language space with various counting intervals. Extensive
experiments on five challenging datasets demonstrate that the proposed
CrowdCLIP achieves superior performance compared to previous unsupervised
state-of-the-art counting methods. Notably, CrowdCLIP even surpasses some
popular fully-supervised methods under the cross-dataset setting. The source
code will be available at https://github.com/dk-liang/CrowdCLIP.
Related papers
- VadCLIP: Adapting Vision-Language Models for Weakly Supervised Video
Anomaly Detection [58.47940430618352]
We propose VadCLIP, a new paradigm for weakly supervised video anomaly detection (WSVAD)
VadCLIP makes full use of fine-grained associations between vision and language on the strength of CLIP.
We conduct extensive experiments on two commonly-used benchmarks, demonstrating that VadCLIP achieves the best performance on both coarse-grained and fine-grained WSVAD.
arXiv Detail & Related papers (2023-08-22T14:58:36Z) - Three ways to improve feature alignment for open vocabulary detection [88.65076922242184]
Key problem in zero-shot open vocabulary detection is how to align visual and text features, so that the detector performs well on unseen classes.
Previous approaches train the feature pyramid and detection head from scratch, which breaks the vision-text feature alignment established during pretraining.
We propose three methods to alleviate these issues. Firstly, a simple scheme is used to augment the text embeddings which prevents overfitting to a small number of classes seen during training.
Secondly, the feature pyramid network and the detection head are modified to include trainable shortcuts.
Finally, a self-training approach is used to leverage a larger corpus of
arXiv Detail & Related papers (2023-03-23T17:59:53Z) - Glance to Count: Learning to Rank with Anchors for Weakly-supervised
Crowd Counting [43.446730359817515]
Crowd image is arguably one of the most laborious data to annotate.
We propose a novel weakly-supervised setting, in which we leverage the binary ranking of two images with high-contrast crowd counts as training guidance.
We conduct extensive experiments to study various combinations of supervision, and we show that the proposed method outperforms existing weakly-supervised methods by a large margin.
arXiv Detail & Related papers (2022-05-29T13:39:34Z) - A Simple Long-Tailed Recognition Baseline via Vision-Language Model [92.2866546058082]
The visual world naturally exhibits a long-tailed distribution of open classes, which poses great challenges to modern visual systems.
Recent advances in contrastive visual-language pretraining shed light on a new pathway for visual recognition.
We propose BALLAD to leverage contrastive vision-language models for long-tailed recognition.
arXiv Detail & Related papers (2021-11-29T17:49:24Z) - Completely Self-Supervised Crowd Counting via Distribution Matching [92.09218454377395]
We propose a complete self-supervision approach to training models for dense crowd counting.
The only input required to train, apart from a large set of unlabeled crowd images, is the approximate upper limit of the crowd count.
Our method dwells on the idea that natural crowds follow a power law distribution, which could be leveraged to yield error signals for backpropagation.
arXiv Detail & Related papers (2020-09-14T13:20:12Z) - Contrastive Visual-Linguistic Pretraining [48.88553854384866]
Contrastive Visual-Linguistic Pretraining constructs a visual self-supervised loss built upon contrastive learning.
We evaluate it on several down-stream tasks, including VQA, GQA and NLVR2.
arXiv Detail & Related papers (2020-07-26T14:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.