Regret Distribution in Stochastic Bandits: Optimal Trade-off between
Expectation and Tail Risk
- URL: http://arxiv.org/abs/2304.04341v1
- Date: Mon, 10 Apr 2023 01:00:18 GMT
- Title: Regret Distribution in Stochastic Bandits: Optimal Trade-off between
Expectation and Tail Risk
- Authors: David Simchi-Levi, Zeyu Zheng, Feng Zhu
- Abstract summary: We study the trade-off between expectation and tail risk for regret distribution in the multi-armed bandit problem.
We show how the order of expected regret exactly affects the decaying rate of the regret tail probability for both the worst-case and instance-dependent scenario.
- Score: 22.843623578307707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the trade-off between expectation and tail risk for regret
distribution in the stochastic multi-armed bandit problem. We fully
characterize the interplay among three desired properties for policy design:
worst-case optimality, instance-dependent consistency, and light-tailed risk.
We show how the order of expected regret exactly affects the decaying rate of
the regret tail probability for both the worst-case and instance-dependent
scenario. A novel policy is proposed to characterize the optimal regret tail
probability for any regret threshold. Concretely, for any given $\alpha\in[1/2,
1)$ and $\beta\in[0, \alpha]$, our policy achieves a worst-case expected regret
of $\tilde O(T^\alpha)$ (we call it $\alpha$-optimal) and an instance-dependent
expected regret of $\tilde O(T^\beta)$ (we call it $\beta$-consistent), while
enjoys a probability of incurring an $\tilde O(T^\delta)$ regret
($\delta\geq\alpha$ in the worst-case scenario and $\delta\geq\beta$ in the
instance-dependent scenario) that decays exponentially with a polynomial $T$
term. Such decaying rate is proved to be best achievable. Moreover, we discover
an intrinsic gap of the optimal tail rate under the instance-dependent scenario
between whether the time horizon $T$ is known a priori or not. Interestingly,
when it comes to the worst-case scenario, this gap disappears. Finally, we
extend our proposed policy design to (1) a stochastic multi-armed bandit
setting with non-stationary baseline rewards, and (2) a stochastic linear
bandit setting. Our results reveal insights on the trade-off between regret
expectation and regret tail risk for both worst-case and instance-dependent
scenarios, indicating that more sub-optimality and inconsistency leave space
for more light-tailed risk of incurring a large regret, and that knowing the
planning horizon in advance can make a difference on alleviating tail risks.
Related papers
- $(\epsilon, u)$-Adaptive Regret Minimization in Heavy-Tailed Bandits [29.966828248335972]
We study the regret minimization problem when $epsilon$ and $u$ are unknown to the learner.
AdaR-UCB is the first algorithm that enjoys regret guarantees nearly matching those of the non-adaptive heavy-tailed case.
arXiv Detail & Related papers (2023-10-04T17:11:15Z) - Probably Anytime-Safe Stochastic Combinatorial Semi-Bandits [81.60136088841948]
We propose an algorithm that minimizes the regret over the horizon of time $T$.
The proposed algorithm is applicable to domains such as recommendation systems and transportation.
arXiv Detail & Related papers (2023-01-31T03:49:00Z) - Autoregressive Bandits [58.46584210388307]
We propose a novel online learning setting, Autoregressive Bandits, in which the observed reward is governed by an autoregressive process of order $k$.
We show that, under mild assumptions on the reward process, the optimal policy can be conveniently computed.
We then devise a new optimistic regret minimization algorithm, namely, AutoRegressive Upper Confidence Bound (AR-UCB), that suffers sublinear regret of order $widetildemathcalO left( frac(k+1)3/2sqrtnT (1-G
arXiv Detail & Related papers (2022-12-12T21:37:36Z) - A Simple and Optimal Policy Design with Safety against Heavy-Tailed Risk for Stochastic Bandits [27.058087400790555]
We study the multi-armed bandit problem and design new policies that enjoy both worst-case optimality for expected regret and light-tailed risk for regret distribution.
We find that from a managerial perspective, our new policy design yields better tail distributions and is preferable than celebrated policies.
arXiv Detail & Related papers (2022-06-07T02:10:30Z) - Stochastic Shortest Path: Minimax, Parameter-Free and Towards
Horizon-Free Regret [144.6358229217845]
We study the problem of learning in the shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state.
We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus.
We prove that EB-SSP achieves the minimax regret rate $widetildeO(B_star sqrtS A K)$, where $K$ is the number of episodes, $S$ is the number of states, $A$
arXiv Detail & Related papers (2021-04-22T17:20:48Z) - Stability and Deviation Optimal Risk Bounds with Convergence Rate
$O(1/n)$ [4.1499725848998965]
We show a high probability excess risk bound with the rate $O(log n/n)$ for strongly convex and Lipschitz losses valid for emphany empirical risk minimization method.
We discuss how $O(log n/n)$ high probability excess risk bounds are possible for projected gradient descent in the case of strongly convex and Lipschitz losses without the usual smoothness assumption.
arXiv Detail & Related papers (2021-03-22T17:28:40Z) - Fast Rates for the Regret of Offline Reinforcement Learning [69.23654172273085]
We study the regret of reinforcement learning from offline data generated by a fixed behavior policy in an infinitehorizon discounted decision process (MDP)
We show that given any estimate for the optimal quality function $Q*$, the regret of the policy it defines converges at a rate given by the exponentiation of the $Q*$-estimate's pointwise convergence rate.
arXiv Detail & Related papers (2021-01-31T16:17:56Z) - Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed
Rewards [24.983866845065926]
We consider multi-armed bandits with heavy-tailed rewards, whose $p$-th moment is bounded by a constant $nu_p$ for $1pleq2$.
We propose a novel robust estimator which does not require $nu_p$ as prior information.
We show that an error probability of the proposed estimator decays exponentially fast.
arXiv Detail & Related papers (2020-10-24T10:44:02Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
We provide two variants of a Robust Phased Elimination algorithm, one that knows $C$ and one that does not.
We show that both variants attain near-optimal regret in the non-corrupted case $C = 0$, while incurring additional additive terms respectively.
In a contextual setting, we show that a simple greedy algorithm is provably robust with a near-optimal additive regret term, despite performing no explicit exploration and not knowing $C$.
arXiv Detail & Related papers (2020-07-07T09:00:57Z) - Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff
in Regret [115.85354306623368]
We study risk-sensitive reinforcement learning in episodic Markov decision processes with unknown transition kernels.
We propose two provably efficient model-free algorithms, Risk-Sensitive Value Iteration (RSVI) and Risk-Sensitive Q-learning (RSQ)
We prove that RSVI attains an $tildeObig(lambda(|beta| H2) cdot sqrtH3 S2AT big)$ regret, while RSQ attains an $tildeObig(lambda
arXiv Detail & Related papers (2020-06-22T19:28:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.